首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   38篇
  国内免费   90篇
  2023年   10篇
  2022年   16篇
  2021年   30篇
  2020年   31篇
  2019年   39篇
  2018年   18篇
  2017年   21篇
  2016年   19篇
  2015年   14篇
  2014年   27篇
  2013年   61篇
  2012年   32篇
  2011年   37篇
  2010年   26篇
  2009年   43篇
  2008年   45篇
  2007年   51篇
  2006年   53篇
  2005年   37篇
  2004年   30篇
  2003年   39篇
  2002年   30篇
  2001年   32篇
  2000年   27篇
  1999年   11篇
  1998年   12篇
  1997年   10篇
  1996年   17篇
  1995年   19篇
  1994年   10篇
  1993年   7篇
  1992年   11篇
  1991年   6篇
  1990年   11篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1978年   4篇
  1977年   8篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
排序方式: 共有965条查询结果,搜索用时 31 毫秒
1.
2.
3.
The potential of production of sulfated polysaccharides from Porphyridium   总被引:3,自引:0,他引:3  
Summary The environmental conditions prevailing in Israel make marine algae an attractive crop for the production of valuable chemicals. A marine species of Porphyridium seems to fit this purpose.The unicellular red alga Porphyridium is encapsulated by a polysaccharide envelope that is present in the gel state. This polysaccharide is an acidic heteropolymer composed of sulfated sugars. It forms ionic bridges through divalent cations, thus reaching a very high molecular weight. The thickness of the polysaccharide capsule varies according to the phase of growth and the growth conditions. Its outer part dissolves in the growth medium, which becomes progressively more viscous. Sulfated polysaccharides form theramlly reversible gels similar to agar and carrageenan, which are usually extracted from marine macroalgae. These gels have been finding increasing use in commercial applications as gelling agents, thickeners, stabilizers, and emulsifiers.We have done experiments on the cultivation of a marine species of Porphyridium for the production of polysaccharides. This unicellular alga has an advantage over the macroalgae due to its relatively faster growth rate and the possibility to regulate its growth. The potential for production of the polysaccharide, both that dissolved in the external medium and that attached to the cell (including an intracellular fraction), and the effects of growth conditions on productivity were suudied in the laboratory. Porphyridium was also cultivated outdoors in seawater in 1-m2 ponds and its growth potential investigated.  相似文献   
4.
烟草与枸杞叶片组织培养中的无丝分裂   总被引:1,自引:0,他引:1  
  相似文献   
5.
Differences in the relative growth rules of the inherently slow-growing Deschampsia flexuosa L. and the inherently fast-growing Holcus lanatus L. were reflected in cell wall synthesis in the elongation zone of the leaves. Leaf elongation rates depended on the size of the plant and ranged from 6 to 14 mm d?1 in Deschampsia and from 12 to 42 mm d?1 in Holcus. Anatomical data showed that the epidermis and vascular tissue are the important tissues controlling leaf extension. The cell wall polysaccharides of fully expanded leaves of the two species were identical in sugar composition. Enzymatic hydrolysis of polymeric sugars in the cell walls of the sheath and the lamina gave glucose (85%), arabinose (3.5%), fucose (0.5%), xylose (5.0%), mannose (0.5%), galaclose (0.8%) and galacturonic acid (3–4%). This composition applied throughout the blade and the sheath and did not change with ageing. Polysaccharides in the meristems of the two species showed identical sugar compositions with 51–55% glucose, 13–15% galactoronic acid and 13–14% arabinose as the main components. The extension zone was marked by a gradual increase of driselase-digestable polymers (per mm tissue) and a concurrent shift in sugar composition. The massive increase of glucose in the cell wall polymers of the elongation zone is probably caused by cellulose synthesis. The rate of synthesis of cell wall polysaccharides in Holcus was twice as high as that in Deschampsia. The slower-growing Deschampsia has more ferulic acid esterified with cell walls, which might contribute to the slowing of leaf growth. Lignin is not significantly deposited until growth has essentially ceased and is not responsible for the difference in growth rate.  相似文献   
6.
A quick, simple, and reliable method for the extraction of DNA from grapevine species, hybrids, andAmpelopsis brevipedunculata (Vitaceae) has been developed. This method, based on that of Doyle and Doyle (1990), is a CTBA-based extraction procedure modified by the use of NaCl to remove polysaccharides and PVP to eliminate polyphenols during DNA purification. The method has also been used successfully for extraction of total DNA from other fruit species such as apple (Malus domestica), apricot (Prunus armeniaca), cherry (Prunus avium), peach (Prunus persica), plum (Prunus domestica), and raspberry (Rubus idaeus). DNA yield from this procedure is high (up to 1 mg/g of leaf tissue). DNA is completely digestible with restriction endonucleases and amplifiable in the polymerase chain reaction (PCR), indicating freedom from common contaminating compounds.  相似文献   
7.
A method has been developed for the isolation of RNA from apple skin. The method involves an adaptation of the Manning (1991) method and includes a high-salt extraction step and a final purification step through a CsCl cushion. The RNA isolated was of high quality and produced good hybridization signals in northern blot analyses.  相似文献   
8.
The cellular content of carbon, nitrogen, amino acids, polysaccharides, phosphorus and adenosine trtphosphate (ATP) was determined at several stages during the life cycle of the dinoflagellate Scrippsiella trochoidea (Stein) Loeblich. Carbon per cell decreased slightly between exponential and stationary phase growth in vegetative cells whereas nitrogen per cell did not change. Both of these cellular components increased markedly on encystment and then decreased to vegetative cell levels during dormancy and germination. C/N ratios increased gradually during cyst dormancy and activation, reflecting a more rapid decrease in N than in C pools, even though both decreased through time. Amino acid composition was relatively constant during the vegetative cell stages; glutamic acid was the dominant component. Arginine was notably higher in cysts than in vegetative cells but decreased significantly during germination, suggesting a role in nitrogen storage. The ratio of neutral ammo acids to total ammo acids (NAA/TAA) decreased as cysts were formed and then gradually increased during storage and germination. The ratio of basic ammo acids to total ammo acids (BAA/TAA) changed in the opposite direction of NAA/TAA, whereas the ratio of acidic acids to total amino adds (AAA/TAA) was generally invariant. Ammo acid pools were not static during the resting slate in the cysts: there was degradation or biosynthesis of certain, but not all, classes of these compounds. The monosacchande composition of cold and hot water extracted polysaccharides was quite different between cells and cysts. A high percentage of glucose in cysts suggests that the storage carbohydrate is probably in the form of glucan. Total cellular phosphorus was higher in all cyst stages than in vegetative cells. However, ATP-cell?1 decreased as vegetative cells entered stationary phase and encysted, and continued to decrease in cysts during dark cold storage. ATP increased only as the cysts were activated at warm temperatures in the light and began to germinate. The above data demonstrate that dormancy and quiescence are not periods of inactive metabolism but instead are times when numerous biochemical transformations are occurring that permit prolonged survival in a resting state.  相似文献   
9.
During pollen development, soluble carbohydrates of sporophytic origin may be consumed immediately, polymerized to form starch reserves or intine, or transformed into other molecules. Disregarding intine, in mature pollen there are three different types of carbohydrates: (1) polysaccharides such as starch in amyloplasts or polysaccharides in cytoplasmic vesicles, (2) disaccharides such as sucrose and (3) monosaccharides such as glucose and fructose. At dispersal, pollen may be partly or slightly dehydrated, or not dehydrated at all. Partly dehydrated pollen has the capacity to lose or acquire water within limits without detriment to its viability. Slightly and non-dehydrated pollen is vulnerable to water loss and quickly becomes inviable. In partly dehydrated of pollen the carbohydrates consist of cytoplasmic polysacharides and sucrose; in slightly and non-dehydrated pollen these are absent or in low concentrations but there may be reserves of cytoplasmic callose. Starch, glucose and fructose are found in both types. It is postulated that cytoplasmic carbohydrates and sucrose are involved in protecting pollen viability during exposure and dispersal.  相似文献   
10.
Enzymatic depolymerization of polysaccharides with alpha-amylase has been studied in mixed aqueous dimethylsulfoxide (DMSO)/water solvents. Polysaccharide substrate chemical compositions, configurational structures, and bonding pattersn are known to affect observed enzymatic reaction kinetics. The branching structures of polysaccharides and their effects on the kinetic mechanisms of depolymerization reactions via endo-acting hydrolyzing enzyme was studied via size exclusion chromatography coupled to low angle laser light scattering (SEC/LALLS). The glycogen branching structure is a heterogeneously distributed "cluster" structure rather than a homogeneously distributed "treelike" structure. The action pattern of alpha-amylase on glycogen, which is composed of highly branched clusters, as end-products, has a "pseudo-exo-attack" in contrast to an expected "endoattack" as seen in the hydrolysis of amylose or amylopectin substrates. These effects of branched substrates for mixed amylose/glycogen alpha-amylolysis have been predicted and demonstrated by both experimental and theoretical analysis using the kinetic model presented in this report. The "lumped" kinetic model employed, assumes that the enzyme simultaneously attacks both linear and branched substrates. In general, excellent agreement between the model predictions and the experimental observations, both qualitatively and quantitatively, was obtained. (c) 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号