首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2013年   3篇
  2005年   1篇
  2000年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Zhou XJ  Jiang XH  Yu GD  Yin QZ 《生理学报》2000,52(3):215-219
先用持续光照和松果腺切除预处理大鼠,然后制成下丘脑薄片,记录其视交叉上核(SCN)神经元自发放电,观察其昼夜变化和褪黑素(MEL)对它的影响。实验结果表明:⑴在正常光照(光照:黑暗=12:12)条件下,SCN神经元自发放电频率呈现昼夜低的节律性。在昼夜时间(CT)6-8出现放电高峰,频率约为8.3Hz;在CT18-20出现低谷,频率约为3.8Hz。松果腺切除后,SCN神经元自发放电的昼夜节律性基本  相似文献   
2.
The present study was undertaken to ascertain whether the casein derived bitter tastant Cyclo (Leu-Trp) [CLT] has an affinity or not for the particular receptors of the pineal hormone, melatonin, on the melanophores of a major carp Labeo rohita (Ham.). The bitter tastant CLT, in the dose range of 3.34?×?10?16 M to 3.34?×?10?4 M, has induced an aggregatory effect but not in a dose dependent manner. Binding of CLT with the receptors may vary at different concentrations. Denervation of the melanophores has shown a complete inhibition of the CLT mediated aggregation. Prazosin has partially inhibited the aggregatory effect of CLT. Moreover, the bitter tastant’s response is mediated through the α2 adrenoceptors only at particular dose ranges. The MT1 and MT2 melatonin receptor antagonist luzindole and the MT2 specific antagonist K185 have perfectly blocked the aggregatory effects of CLT. We have found that the CLT mediated aggregatory effect is dependent upon the release of neurotransmitters and the two subtypes of melatonin (MT) receptors (MT1 and MT2) possess a perfect affinity towards the bitter tastant CLT. Our study demands a need to further make a clinical research on the effects of bitter tastants on the physiology of the biological rhythm maintaining hormone melatonin.  相似文献   
3.
Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca2+) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca2+ imaging showed that LZ treatment completely abolished Ca2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP3–Ca2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.  相似文献   
4.
This study examined the effect of melatonin (MLT) on in vitro phagocytosis of testicular macrophages taken from control and streptozotocin (STZ)-induced diabetic rats and the possible mechanism of its action. The phagocytic activity was measured as a number of latex beads ingested by 100 macrophages (PI, phagocytic index) in consecutive time points of the incubation. Changes in intracellular free calcium level [Ca2+]i in isolated macrophages in vitro were measured with the use of ratio-image fluorescence microscopy (fluorescent dye: Fura2/AM). Phagocytic index in macrophages isolated from healthy rats was 20% higher than in those from diabetic animals. Melatonin in physiological concentration (10−7 M) significantly (p < 0.05) increased the PI in testicular macrophages from control animals (PI = 68 ± 5 with MLT compared to PI = 46 ± 7 without MLT) while no such effect was observed in the cells from diabetic rats (PI = 36 ± 23 with MLT compared to PI = 31 ± 11 without MLT). Basal [Ca2+]i was significantly (p < 0.01) higher in macrophages from diabetic rats compared to control. Stimulation of both control and diabetic testicular macrophages with 10−7 M MLT resulted in a significant (p < 0.05) increase in [Ca2+]i in cells incubated in 2.5 mM calcium solution while no such response was observed in calcium-free Tyrode solution. However, MLT evoked [Ca2+]i response in macrophages isolated from diabetic animals was much lower than in macrophages isolated from age-matched controls and the time needed for maximal response was much longer. Lack of response in calcium-free solution suggests that extracellular calcium may be necessary to trigger MLT response and in its progression.  相似文献   
5.
The hormone melatonin regulates the biological clock and assist in various other physiologies of vertebrates. Present work is intended to check the affinity of saccharin towards the melatonin receptors and the possible role of saccharin interference in the melatonin physiology. The present in vitro study is based on the working model of isolated scale melanophores in the dorso-lateral region of Labeo rohita. The pigment cells were incubated in the agonist and the antagonists within a limited time frame and subsequently their Melanophore Size Index (MSI) were calculated. The inferences were drafted through the observed signal transduction upshots in pigment translocations within the melanophores. Saccharin, in a wide dose range, has consistently induced a concentration-related aggregation similar to the aggregatory effect as shown by melatonin on the melanophores. Binding of saccharin with the receptors and eliciting its aggregatory effect is partially dependent on the release of neurotransmitters. The aggregatory effects were found to be significantly blocked by luzindole, K185, and prazosin, which are the potent melatonin receptor blockers, at the higher concentrations of saccharin. Hence, all the three subtypes of melatonin receptors viz. MT1, MT2, and MT3 are participating in saccharin-mediated aggregations. Blocking by neomycin shows that Ca2+ ions are very crucial in dispensing the aggregatory effect of the sweetener. This research demands that an intensive and careful thorough study should be made about saccharin, specifically its effects upon melatonin physiology, before its unwarranted use as the food ingredients for human use.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号