首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2926篇
  免费   496篇
  国内免费   124篇
  2024年   27篇
  2023年   103篇
  2022年   128篇
  2021年   232篇
  2020年   212篇
  2019年   331篇
  2018年   178篇
  2017年   131篇
  2016年   118篇
  2015年   151篇
  2014年   243篇
  2013年   222篇
  2012年   158篇
  2011年   124篇
  2010年   93篇
  2009年   81篇
  2008年   85篇
  2007年   82篇
  2006年   83篇
  2005年   89篇
  2004年   52篇
  2003年   47篇
  2002年   79篇
  2001年   29篇
  2000年   31篇
  1999年   31篇
  1998年   35篇
  1997年   25篇
  1996年   31篇
  1995年   29篇
  1994年   27篇
  1993年   23篇
  1992年   31篇
  1991年   28篇
  1990年   21篇
  1989年   19篇
  1988年   17篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   19篇
  1983年   8篇
  1982年   12篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   10篇
  1977年   5篇
  1973年   1篇
  1972年   3篇
排序方式: 共有3546条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(3):807-819.e4
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   
2.
《Cell reports》2020,30(7):2055-2064.e5
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   
3.
Organ cultures of newborn rat lungs synthesize and accumulate DNA, RNA, collagen and noncollagenous proteins almost at a linear rate for at least 5 days. During this period the synthesis of collagen consistently exceeds the synthesis of noncollagenous proteins in a pattern similar to neonatal lung growth in vivo. Although some morphological characteristics of lung architecture are distorted after culture, fundamental structural similarities to lungs growing in intact animals are retained. When these cultures are maintained in atmospheres rich in oxygen, increased collagen synthesis is observed, a response similar to that of lungs in intact animals exposed to high oxygen concentrations in vivo. Our studies suggest that lung organ cultures may be a suitable system for investigating the biochemical aspects of lung tissue-environmental interaction. These studies were supported in parts by NIH Grant HL-19668, a contract (68-03-2005) from the U.S. Environmental Protection Agency, and grants from the California Lung Association.  相似文献   
4.
5.
We evaluated four-dimensional cone beam computed tomography (4D-CBCT) ventilation images (VICBCT) acquired with two different linear accelerator systems at various gantry speeds using a deformable lung phantom.The 4D-CT and 4D-CBCT scans were performed using a computed tomography (CT) scanner, an X-ray volume imaging system (Elekta XVI) mounted in Versa HD, and an On-Board Imager (OBI) system mounted in TrueBeam. Intensity-based deformable image registration (DIR) was performed between peak-exhale and peak-inhale images. VICBCT- and 4D-CT-based ventilation images (VICT) were derived by DIR using two metrics: one based on the Jacobian determinant and one on changes in the Hounsfield unit (HU). Three different DIR regularization values (λ) were used for VICBCT. Correlations between the VICBCT and VICT values were evaluated using voxel-wise Spearman’s rank correlation coefficient (r).In case of both metrics, the Jacobian-based VICBCT with a gantry speed of 0.6 deg/sec in Versa HD showed the highest correlation for all the gantry speeds (e.g., λ = 0.05 and r = 0.68). Thus, the r value of the Jacobian-based VICBCT was greater or equal to that of the HU-based VICBCT. In addition, the ventilation accuracy of VICBCT increased at low gantry speeds.Thus, the image quality of VICBCT was affected by the change in gantry speed in both the imaging systems. Additionally, DIR regularization considerably influenced VICBCT in both the imaging systems. Our results have the potential to assist in designing CBCT protocols, incorporating VICBCT imaging into the functional avoidance planning process.  相似文献   
6.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.  相似文献   
7.
8.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.  相似文献   
9.
10.
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia–reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using 31P and hyperpolarized 13C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized 13C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung’s energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung’s mitochondrial activity through an independent interaction with the electron transport chain complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号