首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3040篇
  免费   470篇
  国内免费   134篇
  2024年   24篇
  2023年   104篇
  2022年   127篇
  2021年   237篇
  2020年   219篇
  2019年   352篇
  2018年   188篇
  2017年   128篇
  2016年   128篇
  2015年   147篇
  2014年   261篇
  2013年   238篇
  2012年   161篇
  2011年   147篇
  2010年   100篇
  2009年   84篇
  2008年   91篇
  2007年   83篇
  2006年   84篇
  2005年   88篇
  2004年   51篇
  2003年   49篇
  2002年   76篇
  2001年   31篇
  2000年   40篇
  1999年   30篇
  1998年   31篇
  1997年   25篇
  1996年   31篇
  1995年   24篇
  1994年   28篇
  1993年   20篇
  1992年   25篇
  1991年   29篇
  1990年   20篇
  1989年   19篇
  1988年   16篇
  1987年   12篇
  1986年   9篇
  1985年   8篇
  1984年   17篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   11篇
  1977年   5篇
  1976年   2篇
  1972年   2篇
排序方式: 共有3644条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(3):807-819.e4
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   
2.
《Cell reports》2020,30(7):2055-2064.e5
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   
3.
Organ cultures of newborn rat lungs synthesize and accumulate DNA, RNA, collagen and noncollagenous proteins almost at a linear rate for at least 5 days. During this period the synthesis of collagen consistently exceeds the synthesis of noncollagenous proteins in a pattern similar to neonatal lung growth in vivo. Although some morphological characteristics of lung architecture are distorted after culture, fundamental structural similarities to lungs growing in intact animals are retained. When these cultures are maintained in atmospheres rich in oxygen, increased collagen synthesis is observed, a response similar to that of lungs in intact animals exposed to high oxygen concentrations in vivo. Our studies suggest that lung organ cultures may be a suitable system for investigating the biochemical aspects of lung tissue-environmental interaction. These studies were supported in parts by NIH Grant HL-19668, a contract (68-03-2005) from the U.S. Environmental Protection Agency, and grants from the California Lung Association.  相似文献   
4.
5.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.  相似文献   
6.
7.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.  相似文献   
8.
9.
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia–reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using 31P and hyperpolarized 13C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized 13C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung’s energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung’s mitochondrial activity through an independent interaction with the electron transport chain complexes.  相似文献   
10.
Several geological formations of the Utah-Colorado mining region mined for uranium ore during and after World War II had been mined earlier for vanadium. Therefore, most miners and millers from that region were exposed to those metals’ ores or tailings at one time or another. Preliminary investigation to determine uranium and vanadium retained in the lungs of a former uranium miner and miller from this region, who died of lung cancer (mesothelioma), showed a high nonuniform distribution of vanadium. This observation led to the hypothesis that the vanadium content in the lungs could be associated with inhaled particles. Further examination of spectra of characteristic X-rays obtained by scanning particle-induced X-ray emission (microPIXE) of an autopsy sample of this lung indicated that vanadium was indeed present in localized sites within the 20-μm spatial resolution of the proton beam. This work points out that the microPIXE-RBS (Rutherford backscattering) test for vanadium can be used for site localization of inhaled particles retained in the lungs. Further studies are in progress to: (i) locate uranium-bearing particles in lung tissues of former uranium miners and millers; and (ii) evaluate the local doses of alpha radiation received from these particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号