首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4058篇
  免费   596篇
  国内免费   206篇
  2024年   31篇
  2023年   139篇
  2022年   170篇
  2021年   347篇
  2020年   322篇
  2019年   491篇
  2018年   247篇
  2017年   163篇
  2016年   161篇
  2015年   204篇
  2014年   328篇
  2013年   339篇
  2012年   216篇
  2011年   193篇
  2010年   129篇
  2009年   114篇
  2008年   117篇
  2007年   112篇
  2006年   107篇
  2005年   121篇
  2004年   76篇
  2003年   71篇
  2002年   89篇
  2001年   35篇
  2000年   48篇
  1999年   35篇
  1998年   43篇
  1997年   34篇
  1996年   38篇
  1995年   27篇
  1994年   37篇
  1993年   28篇
  1992年   29篇
  1991年   35篇
  1990年   22篇
  1989年   21篇
  1988年   22篇
  1987年   16篇
  1986年   13篇
  1985年   8篇
  1984年   18篇
  1983年   9篇
  1982年   11篇
  1981年   9篇
  1980年   7篇
  1979年   9篇
  1978年   10篇
  1977年   5篇
  1975年   1篇
  1972年   2篇
排序方式: 共有4860条查询结果,搜索用时 31 毫秒
1.
《Cell reports》2020,30(3):807-819.e4
  1. Download : Download high-res image (268KB)
  2. Download : Download full-size image
  相似文献   
2.
《Cell reports》2020,30(7):2055-2064.e5
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   
3.
Organ cultures of newborn rat lungs synthesize and accumulate DNA, RNA, collagen and noncollagenous proteins almost at a linear rate for at least 5 days. During this period the synthesis of collagen consistently exceeds the synthesis of noncollagenous proteins in a pattern similar to neonatal lung growth in vivo. Although some morphological characteristics of lung architecture are distorted after culture, fundamental structural similarities to lungs growing in intact animals are retained. When these cultures are maintained in atmospheres rich in oxygen, increased collagen synthesis is observed, a response similar to that of lungs in intact animals exposed to high oxygen concentrations in vivo. Our studies suggest that lung organ cultures may be a suitable system for investigating the biochemical aspects of lung tissue-environmental interaction. These studies were supported in parts by NIH Grant HL-19668, a contract (68-03-2005) from the U.S. Environmental Protection Agency, and grants from the California Lung Association.  相似文献   
4.
5.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.  相似文献   
6.
7.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.  相似文献   
8.
9.
Ex vivo lung perfusion (EVLP) has recently shown promise as a means of more accurately gauging the health of lung grafts and improving graft performance post-transplant. However, reperfusion of ischemic lung promotes the depletion of high-energy compounds and a progressive loss of normal mitochondrial function, and it remains unclear how and to what extent the EVLP approach contributes to this metabolic decline. Although ascorbate has been used to mitigate the effects of ischemia–reperfusion injury, the nature of its effects during EVLP are also not clear. To address these uncertainties, this study monitored the energy status of lungs during EVLP and after the administration of ascorbate using 31P and hyperpolarized 13C NMR (nuclear magnetic resonance). Our experiments demonstrated that the oxidative phosphorylation capacity and pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of ascorbate to the perfusate prolonged lung viability by 80% and increased the hyperpolarized 13C bicarbonate signal by a factor of 2.7. The effect of ascorbate is apparently due not to its antioxidant quality but rather to its ability to energize cellular respiration given that it increased the lung’s energy charge significantly, whereas other antioxidants (glutathione and α-lipoic acid) did not alter energy metabolism. During ascorbate administration, inhibition of mitochondrial complex I with rotenone depressed energy charge and shifted the metabolic state of the lung toward glycolysis; reenergizing the electron transport chain with TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) recovered metabolic activity. This indicates that ascorbate slows the decline of the ex vivo perfused lung’s mitochondrial activity through an independent interaction with the electron transport chain complexes.  相似文献   
10.
αVβ3, a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of αVβ3, its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for αVβ3 in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of αVβ3 activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn2+ markedly enhanced αVβ3-dependent adhesion to BSP. αVβ3-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that αVβ3 activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by αVβ3-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of αVβ3 can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of αVβ3 on neoplastic cells may contribute to tumor growth and metastatic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号