首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   13篇
  国内免费   12篇
  2023年   3篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   1篇
  2015年   15篇
  2014年   18篇
  2013年   9篇
  2012年   14篇
  2011年   18篇
  2010年   8篇
  2009年   18篇
  2008年   17篇
  2007年   9篇
  2006年   15篇
  2005年   10篇
  2004年   13篇
  2003年   14篇
  2002年   14篇
  2001年   7篇
  2000年   9篇
  1999年   8篇
  1998年   14篇
  1997年   12篇
  1996年   9篇
  1995年   14篇
  1994年   14篇
  1993年   9篇
  1992年   10篇
  1991年   8篇
  1990年   10篇
  1989年   10篇
  1988年   11篇
  1987年   4篇
  1986年   3篇
  1985年   13篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   16篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
1.
Summary The adult rat lung cytoplasm contains some factors which markedly stimulate adenylate cyclase activity in plasma membranes (Nijjar, M. S. Biochim. Biophys. Acta 584:43–50, 1979). Adenylate cyclase activator (ACA) was purified from rat lungs by DEAE-cellulose chromatography, preparative isoelectric focusing and by repeated high-performance liquid chromatography on a Sepharogel TSK 2000SW column. The final preparation showed about 200 fold purification in ACA activity over the original lung supernatant, and appeared to be homogeneous on the basis of its migration into a single band on SDS-polyacrylamide gel electrophoresis, and co-elution of ACA activity with protein from a gel exclusion column. ACA is an acidic (pl 4.8 ± 0.1), heat labile, monomeric protein of 40000 ± 2000 dalton molecular weight, and does not resemble calmodulin.  相似文献   
2.
Summary Glucagon increased alanine amino transferase (AAT) activity in perfused rat liver by about 90% over control. Propranolol, the beta receptor antagonist, abolished the effect of glucagon on this enzyme. Well known beta receptor agonists like isoproterenol, norepinephrine and epinephrine also increased the enzyme activity under identical condition and the enhancement was similarly abolished by propranolol. These experiments suggest that the effect of glucagon on AAT was mediated through beta adrenergic receptor. However, the interesting observation was that phenylephrine, alpha receptor agonist and phenoxybenzamine and tolazoline, two alpha receptor antagonists, increased the AAT activity like glucagon in perfusion experiments and the effects of all these three agents were also abolished by propranolol. Glucagon, when perfused with phenoxybenzamine showed some additive effect. From all these results we are proposing that in our system phenoxybenzamine is acting as beta agonist although it is known to be an alpha antagonist.  相似文献   
3.
The vasoactive intestinal polypeptide (VIP) receptor was characterized on the GH3 rat pituitary tumor cell line using competitive binding studies with peptides having sequence homology with VIP. Further studies investigated receptor coupling to the adenylate cyclase complex by measurement of cAMP levels. Finally, the molecular weight of the receptor was estimated by affinity labeling techniques. Studies using 125I-VIP and unlabeled competing peptides revealed a single class of high affinity binding sites with a dissociation constant (KD) of 17 +/- 2 nM (mean +/- S.E.M.) for VIP, 275 +/- 46 nM for peptide histidine isoleucine (PHI), and 1380 +/- 800 nM for human pancreatic growth hormone releasing factor (GHRF). VIP and PHI each stimulated intracellular cAMP accumulation in a dose-dependent manner; both peptides demonstrated synergism with forskolin. In contrast, GHRF neither stimulated accumulation of cAMP nor demonstrated synergism with forskolin. VIP plus PHI (1 microM each) caused no significant increase in cAMP over either VIP or PHI alone, implying that the two peptides act through the same receptor. Covalent crosslinking of 125I-VIP to its binding site using either disuccinimidyl suberate (DSS) or ethylene glycol bis(succinimidyl succinate) (EGS) was followed by SDS-PAGE and autoradiography. The result is consistent with an Mr 47 000 VIP-binding subunit comprising or being associated with the VIP receptor of GH3 pituitary tumor cells.  相似文献   
4.
The levels of adenylate nucleotides were examined in 4th-instar Trichoplusia ni larvae 3 days after parasitization by the insect parasite Hyposoter exiguae. In general, parasitization caused a decrease in the level of ATP and increased ADP and AMP levels. These changes resulted in alteration of the adenylate kinase mass-action ratio. The overall energy status of parasitized larvae, however, as indicated by energy ratios, including the “energy charge,” was affected only slightly. The result demonstrates that the host maintained an active and viable metabolic state despite extensive alterations in physiology which occur at this stage of the parasite-host association.  相似文献   
5.
Summary Chloride ions (Cl) are concentrated in airway epithelial cells and subsequently secreted into the tracheal lumen by downhill flux through apical Cl channels. We have studied Cl currents in cultured canine tracheal cells using the whole-cell voltage-clamp technique. Ultrastructural techniques demonstrated that the cells used in the electrophysiological experiments possessed apical membrane specializations known to be present in the intact, transporting cell type. Cultured cells 2–6 days old were characterized by an input resistance of 3.4±0.8 G (n=11) and a capacitance of 63.8±10.8 pF (n=26). A comparison of 3 and 4 day-old cells with 5 and 6 day-old cells showed that the input resistance decreased almost 50%, and the cell capacitance and the inward and outward currents increased concomitantly approximately 200%. Cultured cells 3–4 days old held at –40 mV produced currents of 196±22 pA at 50 mV and –246±27 pA at –90 mV (n=212) with pipette and bath solutions containing primarily 140 KCl and 140 NaCl, respectively. The chloride channel blocker diphenylamine-2-carboxylate (DPC, 100 m) suppressed whole-cell currents by 76.8% at 60 mV; however, currents were unaffected by the stilbenes SITS (1mm) and DNDS (1–30 m). Replacement of K+ with Cs+ in the pipette solution did not affect the outward current, the current reversal potential, or the input resistance of the cells, indicating that the current was not significantly K+ dependent when the intrapipette solution was buffered to a Ca2+ concentration of 20nm. The Cl/Na+ permeability ratio was estimated to be greater than 11 as calculated from reversal potential measurements in the presence of an internal to external NaCl concentration ratio of 12. Current equilibrium permeabilities, relative to Cl were: I (2.9)NO 3 (1.1)Br (1.1)Cl (1.0)F (0.93)MeSO 4 (0.19)gluconate (0.18)aspartate (0.14). Depolarizations to potentials greater than 20 mV elicited a time-dependent component in the outward current in 71% of the cells studied. Currents inactivated with a double exponential time course at the most depolarized voltages. Recovery from inactivation was fast, holding potential-dependent, and followed a double exponential time course. Current amplitude was increased via a cAMP-dependent pathway as has been demonstrated for single Cl-selective channels in cell-attached patches from cultured canine and human tracheal epithelial cells. Forskolin, an activator of adenylate cyclase, produced a 260% increase in the outward current at +50 mV. In summary, cultured canine tracheal cells have a single resting conductance that is Cl selective, voltage-dependent, and modulated by a cAMP-dependent mechanism. This preparation appears to be appropriate for analysis of cellular modulation of airway Cl channels and Cl secretion.  相似文献   
6.
The origin of polynucleotide-directed protein synthesis   总被引:7,自引:0,他引:7  
Summary If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that, at first, the simple attachment of amino acids to the 2′(3′)-termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.  相似文献   
7.
We have examined the catecholamine-sensitive adenylate cyclase in the retina of the white perch (Roccus americanus). Both dopamine and the beta-adrenergic agonist isoproterenol stimulate cyclic AMP accumulation in this retina, but serotonin, an indoleamine, and phenylephrine, an alpha-adrenergic agonist, had no effect. The stimulation of adenylate cyclase by isoproterenol is more potent and effective than that of dopamine. The effects of dopamine and isoproterenol are mediated via independent dopamine and beta-adrenergic receptors. Haloperidol, a dopamine antagonist, blocks the stimulatory effect of dopamine but not of isoproterenol. Conversely, propranolol, a beta-adrenergic antagonist, blocks the stimulatory effect of isoproterenol but not of dopamine. The effects of dopamine and isoproterenol are not additive. In fractions of purified horizontal cells we found evidence for dopamine receptors linked to adenylate cyclase but did not find evidence for the presence of cyclase coupled beta-adrenergic receptors. The cellular location of the beta-adrenergic receptors is unknown. Our findings demonstrate the existence of both beta-adrenergic and dopamine receptors coupled to adenylate cyclase in the white perch retina. However, we did not find either epinephrine or norepinephrine, endogenous ligands of the beta-receptor, to be present in retinal extracts subjected to HPLC.  相似文献   
8.
Summary Cytosolic proteins as components of the physiological mitochondrial environment were substituted by dextrans added to media normally used for incubation of isolated mitochondria. Under these conditions the volume of the intermembrane space decreases and the contact sites between the both mitochondrial membranes increase drastically. These morphological changes are accompanied by a reduced permeability of the mitochondrial outer compartment for adenine nucleotides as it was shown by extensive kinetic studies of mitochondrial enzymes (oxidative phosphorylation, mi-creatine kinase, mi-adenylate kinase). The decreased permeability of the mitochondrial outer membrane causes increased rate dependent concentration gradients in the micromolar range for adenine nucleotides between the intermembrane space and the extramitochondrial space. Although all metabolites crossing the outer membrane exhibit the same concentration gradients, considerable compartmentations are detectable for ADP only due to its low extramitochondrial concentration. The consequences of ADP-compartmentation in the mitochondrial intermembrane space for ADP-channelling into the mitochondria are discussed.  相似文献   
9.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   
10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and helospectin are two vasoactive intestinal polypeptide (VIP)-related neuropeptides that have recently been demonstrated in the mammalian gut; the aim of this study was to reveal their occurrence and localisation in the gastrointestinal tract, swimbladder, urinary bladder and the vagal innervation of the gut of teleosts, using immunohistochemical methods on whole-mounts and sections of these tissues from the Atlantic cod, Gadus morhua and the rainbow trout, Oncorhynchus mykiss. Both PACAP-like and helospectin-like peptides were present in the gut wall of the two species. Immunoreactive nerve fibres were found in all layers but were most frequent in the myenteric plexus and along the circular muscle fibres. Immunoreactivity was also demonstrated in nerves innervating the swimbladder wall, the urinary bladder and blood vessels to the gut. Immunoreactive nerve cell bodies were found in the myenteric plexus of the gut and in the muscularis mucosae of the swimbladder. In the vagus nerve, non-immunoreactive nerve cells were surrounded by PACAP-immunoreactive fibres. Double staining revealed the coexistence of PACAP-like and helospectin-like peptides with VIP in all visualized nerve fibres and in some endocrine cells. It is concluded that PACAP-like and helospectin-like peptides coexist with VIP in nerves innervating the gut of two teleost species. The distribution suggests that both PACAP and helospectin, like VIP, are involved in the control of gut motility and secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号