首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   11篇
  国内免费   8篇
  2023年   18篇
  2022年   26篇
  2021年   22篇
  2020年   12篇
  2019年   30篇
  2018年   40篇
  2017年   25篇
  2016年   26篇
  2015年   28篇
  2014年   44篇
  2013年   70篇
  2012年   58篇
  2011年   53篇
  2010年   45篇
  2009年   31篇
  2008年   35篇
  2007年   48篇
  2006年   31篇
  2005年   37篇
  2004年   16篇
  2003年   24篇
  2002年   21篇
  2001年   15篇
  2000年   8篇
  1999年   12篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   10篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   11篇
  1983年   10篇
  1982年   9篇
  1981年   6篇
  1980年   6篇
  1979年   8篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1971年   1篇
排序方式: 共有917条查询结果,搜索用时 31 毫秒
1.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   
2.
Specific alloprecipitins were found in blood plasma of pigs, immunized by sera of Lpr1 positive donors. These precipitins detected a new allotype of the lipoprotein Lpr system which was designated Lpr3. Genetic studies confirmed its codominant inheritance and subgroup character. This linear subgroup of allotype Lprl is controlled by the allele Lpr1,3. Investigations in populations of 14 pig breeds showed significant interbreed differences in the frequencies of alleles Lpr1, Lpr2 and Lpr1,3.  相似文献   
3.
Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0–37.8] mg/dl) and slightly reduced in heterozygotes (218 [153–234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.  相似文献   
4.
Chronic administration of ethanol in rats caused the reduction of serum cholesterol binding reserve. The very low density and high density lipoproteins, main serum cholesterol binding reserves, were slightly increased with corresponding increases in their lipid and protein components during initial stage of alcohol consumption. However, these capacities get deminished during reversal of hyperlipemia induced by prolonged action of ethanol. This situation may be an early indicator for the initiation of hepatic damage and a variety of secondary effects of ethanol.  相似文献   
5.
5-methoxypsoralen (5-MOP) binds to human serum low density lipoproteins (LDL) according to a two-step process. Scatchard analysis of the first step yields K = 1.4 × 105 M?1 and 4 binding sites. It involves the LDL apoprotein. The second step corresponds to a solubilization, in the lipidic core, of ? 45 molecules of 5MOP per LDL molecule. It is accompanied by a large blue shift of the 5MOP fluorescence. The ability of LDL to bind 5MOP and to carry it into various cells may explain some biological effects sometimes encountered during PUVA therapy.  相似文献   
6.
A chemiluminescence (CL) flash kinetics on the addition of Fe2+ ions into oxidized low density lipoprotein (LDL) suspension has been studied. LDL oxidation was carried out at 37°C without and in the presence of 5 or 50 μM of Cu.2+ It has been found that under certain experimental conditions (the addition of excess iron ions, more than 1 mM) the amplitude of CL flash depended almost linearly (1) on the concentration of oxidized LDL and (2) on the extent of LDL oxidation measured as diene conjugates (DC) and 2-thiobarbituric acid-reactive substance (TBARS) accumulation. The corresponding correlation coefficients were: for TBARS - 0.94 and for DC - 0.97, in the case of LDL autooxidation; 0.72 and 0.98, in the case of copper-induced LDL oxidation. A sensitivity of the CL method was shown to be significantly enhanced (by more than two orders) in the presence of CL sensitizer - 2, 3,5, 6-lH,4H-tetrahydro-9-(2' -benzoimidazolyl)-quinolizin-(9, 9a, 1 -gh)coumarin.  相似文献   
7.
8.
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure–function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.  相似文献   
9.
The effects of feeding two levels of rice bran oil (RBO) on the growth, lipid parameters, and fatty acid composition of the plasma and liver of rats (Wistar strain) were compared with those produced on animals which had been fed the same levels of peanut oil (PNO). The control animals were fed synthetic diets containing 5 and 20% peanut oil (PNO) and the experimental groups were fed similar diets, containing the same level of rice bran oil (RBO). There was no significant difference with respect to the organ weights between the control and the experimental groups. In general, groups fed 20% oil gained more weight than groups fed 5% oil. The animals which received rice bran oil in their diet had, in general, comparatively lower levels of cholesterol, triglycerides and phospholipids. On the other hand, animals receiving 20% rice bran oil in their diet, showed an increase of 20% in high density lipoproteins (HDL-C), within 18 weeks (p<0.05), when compared to the animals fed with peanut oil. Similarly, low density lipoprotein cholesterol (LDL-C) and very low density lipoprotein cholesterol (VLDL-C) were lower in RBO-fed groups, than in the PNO-fed groups. There was, however, no significant differences in the cholesterol/phospholipid (C/P) ratio of the two groups. Analysis of plasma and of liver fatty acids indicated, in a general way, the type of fat consumed. There were no significant difference in the P/S ratio, nor any in the oleic/linoleic, oleic/stearic, palmitoleic/palmitic, oleic/palmitic, and oleic/palmitoleic ratios. Furthermore, levels of saturated (SAFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids were identical in both the groups. Thus, our results suggest that feeding a high level of rice bran oil (RBO) has no deleterious effect on the growth and blood lipid profile of rats.Abbreviations PNO peanut oil - RBO rice bran oil - HDL-C high density lipoprotein cholesterol - LDL-C low density lipoprotein cholesterol - VLDL-C very low density lipoprotein cholesterol - SAFA saturated fatty acids - MUFA mono-unsaturated fatty acids  相似文献   
10.
Y-organs are the ecdysial glands of crustaceans, responsible for synthesis and secretion of ecdysteroid hormones. For this purpose, the glands acquire cholesterol as obligate precursor entirely from circulating high-density lipoprotein (HDL). A preceding study provided evidence for the mechanism of acquisition: Y-organs take up cholesterol bound to HDL by an energy-requiring process, receptor-mediated absorptive endocytosis. The present study characterized the receptors involved utilizing isolated Y-organ membranes. HDL binding was saturable and specific; a dissociation constant (Kd) of 1.08 × 10?7 M and a binding maximum at equilibrium (Bmax) of 70 μg HDL protein/mg membrane protein, were obtained. Binding was decreased by protease and was dependent upon calcium. Y-organs are regulated negatively by a peptide hormone from the eystalks, molt-inhibiting hormone (MIH). Y-organ membranes from de-eyestalked crabs (MIH absent) exhibited the same Kd value as membranes from intact crabs, but a Bmax 17% higher. Thus, MIH activity apparently does not change the binding affinity of HDL, but decreases the number of binding sites. These results agree with our previous findings that MIH depresses ecdysteroid synthesis in part by inhibiting cholesterol uptake. Generally, Y-organ cells appear to contain receptors for HDL that are of high affinity and high binding capacity, similar to the characteristics reported for the binding of insect HDL (vitellogenin) to fat bodies and oocytes. © 1995 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号