首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   9篇
  国内免费   9篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   1篇
  2014年   7篇
  2013年   14篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   13篇
  2002年   5篇
  2001年   14篇
  2000年   10篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   13篇
  1994年   7篇
  1993年   8篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   9篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
2.
3.
Three field experiments were performed in Lake Lacawac, PA to determine the importance of potentially limiting nutrients relative to other factors (grazing, depth) in structuring shallow water algal periphyton communities. All three experiments measured periphyton growth (as chlorophyll-a, AFDM or biovolumes of the algal taxa) on artificial clay flower pot substrates which released specified nutrients to their outer surfaces.Control of standing crop by nutrient supply rate vs. grazing was examined in Expt. I. Substrates releasing excess N and P, together with one of 4 levels of C (as bicarbonate) were placed either inside or outside exclosures designed to reduce grazer densities. Chlorophyll-a rose from 1.1–25.6 µg.cm–2, and some dominant taxa (e.g., Oedogonium, Nostoc, Anacystis) were replaced by others (e.g., Scenedesmus, Cryptomonas) as bicarbonate supply increased. Reductions in invertebrate density did not significantly affect chlorophyll-a at any of the nutrient levels.Reasons for the species shift were further evaluated in Expt. II, using a minielectrode to measure the elevation of pH within the periphyton mat through photosynthetic utilization of bicarbonate. The pH adjacent to pots diffusing N, P and large quantities of bicarbonate, and supporting high chlorophyll-a densities of 32 µg cm–2, averaged 10.0 compared to 6.3 in the water column. Pots diffusing only N and P supported 0.7 µg chlorophyll-a cm–2 and elevated pH to 8.2. We suspect that bicarbonate addition favored efficient bicarbonate users (e.g., Scenedesmus), while inhibiting other taxa (e.g., Oedogonium) because of the attendant high pH.Expt. III was designed to test effects of depth (0.1 m vs. 0.5 m) and N (NH4 + vs. NO3 ) upon the growth response to bicarbonate observed in Expts. I and II. Similar standing crop and species composition were noted on pots at 0.1 m vs. 0.5 m. Enrichment with NH4 + vs. NO3 also appeared to have little effect upon the periphyton community.Shallow water periphyton communities in Lake Lacawac, when supplied with sufficient N and P, appear to show a distinctive response to increasing bicarbonate concentration and pH which is robust to moderate variation in grazer densities, distance from the water surface, and the form of N enrichment.  相似文献   
4.
5.
Interactions have been studied between juvenile plants of green, brown, and red marine algae and 31 diatom clones isolated from a variety of marine eulittoral habitats. The interactions seemed to be of an individual nature for both juvenile plants and diatoms. Germlings of Ulva lactuca L. mostly showed enhanced growth, often with significant increases in population sizes of the accompanying diatoms. Fucus spiralis L. germlings were mainly unaffected by growth in the presence of the diatom clones, but growth of the diatoms was often stimulated. Ascophyllum nodosum (L.) Le Jol. germlings were little affected, whilst the accompanying diatoms were less noticeably affected than with Fucus spiralis. Germlings of F. vesiculosus L. often showed growth inhibitions in the presence of diatoms, with many diatom populations showing enhanced growth. Similarly, the discoid encrusting sporelings of Chondrus crispus Stackh. showed growth inhibitions where there were measurable interactions, although the accompanying diatoms usually failed to show growth stimulations. The discoid sporelings of Gigartina stellata (Stackh. in With.) Batt. showed high mortalities, usually with marked increases in population sizes of accompanying diatoms.  相似文献   
6.
During a biotypological research of surface waters in the province of Friesland, The Netherlands, the macroinvertebrate fauna was sampled, both from the littoral and bottom substrata. Results of this investigation in different types of water on 60 and 55 stations in 1981 and 1982, respectively, are presented. The species richness in the littoral samples exceeded that of the bottom samples, and the samples per station had relatively few species in common. Even in many cases the most abundant taxon was a different one in both samples of the same spot. With multivariate analysis of the data sets from bottom, littoral and total samples a fairly good resemblance was found between these data sets. It is concluded that the semi-quantitative processing of macroinvertebrate fauna data leads to reliable results. One can use one sample per station, wherein different substrata are combined. Distinct clusters were recognized in more extreme environmental conditions such as brackish and acid waters. With the help of the macroinvertebrate fauna the other types of water could not easily be differentiated.  相似文献   
7.
We analysed the spatio-temporal distribution of zooplankton along a profile of 10 stations from the shore to the pelagic zone from April to September 1988, the period when the larvae and juveniles Rutilus rutilus, the most abundant species in the Lake, are in the littoral zone. The digestive tracts of the young roach were analysed. They fed essentially on rotifers and on cladocerans. For comparison, zooplankton was also analysed at one littoral area without fish fry. There was an increase of cladoceran density from the vegetated nearshore zone to the offshore zone. Considering the density of Bosmina longirostris, Daphnia longispina, Chydorus sphaericus and Ceriodaphnia quadrangula, we observed a different distribution pattern in the course of the year. In the nearshore zone, the relative abundance of small species, Bosmina and Chydorus, was much higher than that of the larger Daphnia. From April to September, predation pressure mainly affected the smallest species: in contrast to the inshore station without fish fry, the density of Bosmina decreased in May in the littoral with fish. Chydorus was concentrated in the littoral between February and April, then grew into the pelagic zone, where predation pressure obviously was low during the warm season. The number of Daphnia, which was eaten by the fish fry at any time, remained low in the nearshore zone, which suggests that the presence of fish may cause Daphnia to avoid this zone. Ceriodaphnia which was not affected by this predation, was scarce in the nearshore zone during mid-summer. The low density of the cladocerans in the nearshore zone is likely associated with vertebrate predation by roach fry and juveniles, the result of such a process being either a depletion in density of the prey, or an avoidance behaviour.  相似文献   
8.
The relationship of the macrozoobenthos biomass in the littoral area to the yearly fluctuation in water level and the characteristics of the area or lake are studied using data collected from sheltered bays in regulated and natural waters. Most of the lakes were clear and oligotrophic. The benthos biomass at all depths in the littoral decreased with increased water level fluctuation, provided that the transparency of the water was uniform.The macrozoobenthos biomass in the 0–3 m depth zone could be predicted fromlog macrozoobenthos biomass (mg ODW) m-2=4.25-1.33 (log Biomass Index) in which the Biomass Index is calculated as% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM% gacaqGVbGaaeyBaiaabggacaqGZbGaae4CaiaabccacaqGjbGaaeOB% aiaabsgacaqGLbGaaeiEaiaab2dacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccadaWcaaabaeqabaGaae4DaiaabggacaqG0bGaaeyzaiaabkha% caqGGaGaaeiBaiaabwgacaqG2bGaaeyzaiaabYgacaqGGaGaaeOzai% aabYgacaqG1bGaae4yaiaabshacaqG1bGaaeyyaiaabshacaqGPbGa% ae4Baiaab6gacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgaca% qGLbGaaeiiaiaabchacaqGYbGaaeyzaiaabAhacaqGPbGaae4Baiaa% bwhacaqGZbGaaeiiaiaabMhacaqGLbGaaeyyaiaabkhaaeaacaqGOa% GaaeyBaiaabUdacaqGGaGaae4yaiaabggacaqGSbGaae4yaiaabwha% caqGSbGaaeyyaiaabshacaqGLbGaaeizaiaabccacaqGMbGaaeOCai% aab+gacaqGTbGaaeiiaiaab2gacaqGVbGaaeOBaiaabshacaqGObGa% aeiBaiaabMhacaqGGaGaaeyBaiaabwgacaqGHbGaaeOBaiaabccaca% qG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGPaaaaeaacaqG% tbGaaeyzaiaabogacaqGJbGaaeiAaiaabMgacaqGGaGaaeizaiaabM% gacaqGZbGaae4AaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyz% aiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGa% Gaae4CaiaabggacaqGTbGaaeyzaiaabccacaqGVbGaaeiCaiaabwga% caqGUbGaaeiiaiaabEhacaqGHbGaaeiDaiaabwgacaqGYbGaaeiiai% aabohacaqGLbGaaeyyaiaabohacaqGVbGaaeOBaiaabccacaqGOaGa% aeyBaiaabMcaaaaccaGae8hiaaIaaKiEaiab-bcaGiaaigdacaaIWa% GaaGimaiaac6caaaa!CBD8!\[{\text{Biomass Index = }}\frac{\begin{gathered} {\text{water level fluctuation in the previous year}} \hfill \\ {\text{(m; calculated from monthly mean values)}} \hfill \\ \end{gathered} }{{{\text{Secchi disk value in the same open water season (m)}}}} \user1{x} 100.\]The whole illuminated littoral shifts due to water level fluctuation, which disturbs the zonation of the benthos. Such an increase or decrease in benthic biomass has been observed after one year of disturbance due to water level fluctuation. It need, however, a study based on the carefully planned and collected data, in which it can be taken account by a multivariate statistical analysis also the interactions between the important factors affected the littoral benthos.  相似文献   
9.
K. Jenderedjian 《Hydrobiologia》1994,278(1-3):281-286
Potamothrix alatus paravanicus Poddubnaya & Pataridze (Tubificidae) is the most abundant species of benthic invertebrate in Lake Sevan and the only species in the deep profundal. Differences in annual temperature, length of the stratification period (low oxygen content) and bottom sediment characteristics influence the population of P. a. paravanicus in different depth zones of Lake Sevan. From shallow to deep water a regular increase of the following indices was observed in 1984–1987: annual biomass from 1.2–2.0 to 8.2–17.0 g m–2 wet weight; mean individual wet weight of clitellate specimens from 2.0–3.8 to 8.3–16.6 mg; total life span from one and a half to more than 20 years; the length of breeding season from 2–3 to 12 months.An important ecological distinction between P. a. paravanicus and allied Potamothrix hammoniensis (Michaelsen) is the much lower fecundity of the former species.  相似文献   
10.
A. Duncan  J. Kubečka 《Hydrobiologia》1995,303(1-3):11-30
The morphology and function of one tropical and 25 temperate reservoirs are examined in relation to their effect upon the nature of the land/water interface and, further, to what extent the features of these ecotones satisfy the ecological requirements of the reservoir fish species throughout their life cycle during spawning, larval, juvenile and adult stages. The two main conclusions are that (1) reservoir fish species are especially dependent upon land/water ecotones during their early life history and (2) there exists a strong relationship between the extent of the littoral area and the nature of the fish stocks. Several examples are given to show that manipulation of the land/water ecotone is a major tool for the management of reservoirs advantageously for their major functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号