首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   30篇
  国内免费   45篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   14篇
  2020年   9篇
  2019年   23篇
  2018年   14篇
  2017年   17篇
  2016年   12篇
  2015年   9篇
  2014年   22篇
  2013年   16篇
  2012年   19篇
  2011年   18篇
  2010年   17篇
  2009年   17篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
  1984年   2篇
  1950年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
Three enzymes, cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], d-glucose oxidase (β-d-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) and peroxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) immobilized on glass beads, have been incubated with lignocellulose. Fungal peroxidases from Trametes versicolor and Inonotus radiatus when mixed with cellulase and d-glucose oxidase were able to liberate phenolic compounds and d-glucose from lignocellulose. Three lignin monomers were identified. When the immobilized enzymes were incubated individually with lignocellulose they did not degrade lignin.  相似文献   
2.
When various lignin-related para-phenolic benzoic acids, para-phenolic cinnamic acids, para-phenolic phenylpropionic acids, the corresponding unsubstituted and 4-O-methylated derivatives, and 4-hydroxyl substituted benzaldehydes were tested on the growth of eight white-rot fungi, methylation of the 4-hydroxy substituent resulted, in most cases, in increased inhibition of fungal growth. This effect was most notable with monomethoxylated compounds. When the aromatic ring contained additional methoxyl substituents, the toxicity of the 4-O-methylated derivative was less pronounced. Marked inhibition of fungal growth was also observed with aromatic compounds lacking a para-substituent. Higher concentrations of aromatic aldehydes were manifestly more toxic than the corresponding carboxylic acid.J.A. Buswell is with the Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. K.-E.L. Eriksson is with the Department of Biochemistry, The University of Georgia, Athens, Georgia, 30602, USA.  相似文献   
3.
The burgeoning cellulosic ethanol industry necessitates advancements in enzymatic saccharification, effective pretreatments for lignin removal, and the cultivation of crops more amenable to saccharification. Studies have demonstrated that natural inhibitors of lignin biosynthesis can enhance the saccharification of lignocellulose, even in tissues generated several months post-treatment. In this study, we applied daidzin (a competitive inhibitor of coniferaldehyde dehydrogenase), piperonylic acid (a quasi-irreversible inhibitor of cinnamate 4-hydroxylase), and methylenedioxy cinnamic acid (a competitive inhibitor of 4-coenzyme A ligase) to 60-day-old crops of two conventional Brazilian sugarcane cultivars and two energy cane clones, bred specifically for enhanced biomass production. The resultant biomasses were evaluated for lignin content and enzymatic saccharification efficiency without additional lignin-removal pretreatments. The treatments amplified the production of fermentable sugars in both the sugarcane cultivars and energy cane clones. The most successful results softened the most recalcitrant lignocellulose to the level of the least recalcitrant of the biomasses tested. Interestingly, the softest material became even more susceptible to saccharification.  相似文献   
4.
Recycling of cellulases should lower the overall cost of lignocellulosiic bioconversion processes. In this study, three recycling strategies were evaluated to determine their efficiencies over five successive rounds of hydrolysis. The effect of lignin on recycling was examined by comparing water-washed, steam-exploded birch (WB; 32% lignin) and WB which had been further extracted with alkali and peroxide (PB; 4% lignin). When the cellulases were recovered from the residual substrates after partial hydrolysis of both substrates, the recovered cellulase activity toward the mixture of fresh and residual substrates decreased after each recycling step. When the cellulases in the supernatants were also recycled, up to 20% more activity could be recovered. In both of these cases, the recovered activities did not correspond to the activities expected from the amount of cellulase protein recovered during recycling. The best recovery was obtained when the cellulases were recovered from both the residue and the supernatant after complete hydrolysis of the PB substrate. In this case, all of the originally added cellulase activity could be recovered for four consecutive hydrolysis rounds. However, when the same recycling strategy was carried out using the WB substrate, the recovered cellulase activity declined quickly with each recycling round. In all three of the recycling strategies, lower cellulase activities were recovered from the substrates with higher lignin contents. (c) 1995 John Wiley & Sons, Inc.  相似文献   
5.
Localisation of degradative enzymes in white-rot decay of lignocellulose   总被引:1,自引:0,他引:1  
The use of immunogold-cytochemical labelling techniques in electron microscopy of wood infected by basidiomycete fungi has assisted in the elucidation of the localisation of enzymes which degrade lignocellulose. The use of specific immunocytochemical techniques is discussed with respect to the authenticity and accuracy of the methods, the use of adequate controls in the gold-labelling procedure, and the immunospecificity of the antibodies.Localisation of the lignin-degrading enzymes, lignin-peroxidase and laccase, has shown that these enzymes do not bind to wood cell walls unless the process of decay has already commenced. Similarly localisation of cellulases Endoglucanase II (EGII) and Cellobiohydrolase I (CBHI) has shown that these enzymes only bind to exposed ends of cellulose fibrils and to partially degraded areas of the wood cell wall. -Glucosidase is always immobilised within the extracellular polysaccharide layer surrounding fungal hyphae.This review postulates that there is regulation of the release sequence of these lignocellulolytic enzymes defining the spatial arrangement between the hyphae and the wood cell wall. This hypothesis is presented diagrammatically.  相似文献   
6.
Abstract

The present study demonstrates a comparative analysis between the artificial neural network (ANN) and response surface methodology (RSM) as optimization tools for pretreatment and enzymatic hydrolysis of lignocellulosic rice straw. The efficacy for both the processes, that is, pretreatment and enzymatic hydrolysis was evaluated using correlation coefficient (R2) & mean squared error (MSE). The values of R2 obtained by ANN after training, validation, and testing were 1, 0.9005, and 0.997 for pretreatment and 0.962, 0.923, and 0.9941 for enzymatic saccharification, respectively. On the other hand, the R2 values obtained with RSM were 0.9965 for cellulose recovery and 0.9994 for saccharification efficiency. Thus, ANN and RSM together successfully identify the substantial process conditions for rice straw pretreatment and enzymatic saccharification. The percentage of error for ANN and RSM were 0.009 and 0.01 for cellulose recovery and for 0.004 and 0.005 for saccharification efficiency, respectively, which showed the authority of ANN in exemplifying the non-linear behavior of the system.  相似文献   
7.
通过脂质组学分析方法从细胞膜磷脂分布方面探究适应进化酿酒酵母酚酸耐受性机制。主要利用高效液相色谱-质谱(LC-MS)对酚酸胁迫下适应进化菌株和原始菌株脂质成分检测并进行统计学比较分析。检测出565种脂质代谢物,包含细胞膜磷脂185种。相比初始菌株,适应进化菌株细胞膜中磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)和磷脂酰肌醇(PI)类磷脂分子相对含量增加,含有长链(C32-C36)和双不饱和脂酰链的磷脂分子含量增加。统计学分析表明显著性差异磷脂分子主要为含有长链不饱和脂酰链的PC和PE类磷脂分子。推测适应进化菌株通过膜磷脂重塑提高细胞膜完整性,对酚类抑制物起到选择性屏障作用,从而保持细胞活性。  相似文献   
8.
开发利用木质纤维素材料能显著增加地球上可再生资源的储备量。白蚁分布广泛,常见于热带和亚热带地区,它们借助细菌、古细菌、真菌等肠道微生物和原生动物协同降解食物中的木质纤维素,在生态系统的碳、氮循环中发挥着十分重要的作用。本文概括了近年来白蚁肠道微生物研究的进展,特别是近年来已被证明的肠道微生物在木质纤维素降解方面的作用,以期为后续研究木质纤维素的降解提供参考信息。  相似文献   
9.
10.
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co‐utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol‐pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by‐product. It is expected that microbial oil production can be significantly improved through process optimization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号