首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2108篇
  免费   89篇
  国内免费   136篇
  2024年   4篇
  2023年   26篇
  2022年   60篇
  2021年   69篇
  2020年   53篇
  2019年   75篇
  2018年   56篇
  2017年   47篇
  2016年   34篇
  2015年   41篇
  2014年   79篇
  2013年   190篇
  2012年   50篇
  2011年   104篇
  2010年   79篇
  2009年   73篇
  2008年   82篇
  2007年   108篇
  2006年   86篇
  2005年   75篇
  2004年   64篇
  2003年   66篇
  2002年   52篇
  2001年   44篇
  2000年   38篇
  1999年   67篇
  1998年   53篇
  1997年   52篇
  1996年   40篇
  1995年   29篇
  1994年   38篇
  1993年   33篇
  1992年   39篇
  1991年   31篇
  1990年   32篇
  1989年   27篇
  1988年   26篇
  1987年   17篇
  1986年   16篇
  1985年   30篇
  1984年   45篇
  1983年   16篇
  1982年   17篇
  1981年   20篇
  1980年   15篇
  1979年   6篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1973年   7篇
排序方式: 共有2333条查询结果,搜索用时 15 毫秒
1.
Phytochemical analysis of dried twigs of Marsdenia roylei (family Asclepiadaceae) has resulted in the isolation of a trisaccharide, maryal, and a diglycoside, rolinose. Their structures were determined as O-beta-D-oleandropyranosyl-(1-->4)-O-beta-D-digitoxopyranosyl++ +-(1-->4)-D- cymaral and ethyl O-beta-D-oleandropyranosyl-(1-->4)-O-3-O-methyl-6-deoxy-beta-D- allopyranoside, respectively, by chemical degradation and spectroscopic methods.  相似文献   
2.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
3.
Combination therapies, using medicinal herbs, are broadly recommended to attenuate the chemotherapy adverse effects. Based on our previous findings considering the anti-leukaemic effects of ginger extract on acute lymphoblastic leukaemia (ALL) cells, the present study was aimed to investigate the anti-cancer role of this pharmaceutical plant on ALL mice models. Moreover, we worked towards identifying the most anti-leukaemic derivative of ginger and the mechanism through which it may exert its cytotoxic impact. In vivo experiments were performed using five groups of six C57BL/6 nude mice, and the anti-leukaemic activity of ginger extract alone or in combination with methotrexate (MTX) was examined. Results showed increased survival rate and reduced damages in mice brain and liver tissues. Subsequently, MTT assay demonstrated synergistic growth inhibitory effect of 6-shogaol (6Sh) and MTX on ALL cell lines and patients primary cells. Eventually, the molecular anti-neoplastic mechanism of 6Sh was evaluated using Bioinformatics. Flow cytometry illustrated 6Sh-mediated apoptosis in Nalm-6 cells confirmed by Western blotting and RT-PCR assays. Further analyses exhibited the generation of reactive oxygen species (ROS) through 6Sh. The current study revealed the in vivo novel anti-leukaemic role of ginger extract, promoted by MTX. Moreover, 6-shogaol was introduced as the major player of ginger cytotoxicity through inducing p53 activity and ROS generation.  相似文献   
4.
We previously reported on the in vitro antifungal activity of a crude whole plant extract from Eucomis autumnalis against seven economically important plant pathogenic fungi. A crude extract of the bulb showed similar in vitro mycelial growth inhibition of the same plant pathogenic fungi as well as that of an eighth fungus, Mycosphaerella pinodes, the cause of black spot or Ascochyta blight, in peas. Subsequently, fourth internode leaves were removed from 4 wk old pea plants, placed on moist filter paper in Petri dishes and inoculated with an M. pinodes spore suspension before and after treatment with the extract. The control of Ascochyta blight by different concentrations of the crude E. autumnalis extract was followed in vivo by leaf symptoms over a 6 day period at 20°C in a growth cabinet. The crude extract prevented M. pinodes spore infection of the leaves when the leaves were inoculated with spores both before or after treatment with the extract, confirming complete inhibition of spore germination. The crude E. autumnalis extract showed no phytotoxic reaction on the leaves even at the highest concentration applied.  相似文献   
5.
Abstract Soil waterlogging decreased leaf conductance (interpreted as stomatal closure) of vegetative pea plants (Pisuin sativum L. cv. ‘Sprite’) approximately 24 h after the start of flooding, i.e. from the beginning of the second 16 h-long photo-period. Both adaxial and abaxial surfaces of leaves of various ages and the stipules were affected. Stomatal closure was sustained for at least 3 d with no decrease in foliar hydration measured as water content per unit area, leaf water potential or leaf water saturation deficit. Instead, leaves became increasingly hydrated in association with slower transpiration. These changes in the waterlogged plants over 3 d were accompanied by up to 10-fold increases in the concentration of endogenous abscisic acid (ABA). Waterlogging also increased foliar hydration and ABA concentrations in the dark. Leaves detached from non-waterlogged plants and maintained in vials of water for up to 3 d behaved in a similar way to leaves on flooded plants, i.e. stomata closed in the absence of a water deficit but in association with increased ABA content. Applying ABA through the transpiration stream to freshly detached leaflets partially closed stomata within 15 min. The extractable concentrations of ABA associated with this closure were similar to those found in flooded plants. When an ABA-deficient ‘wilty’ mutant of pea was waterlogged, the extent of stomatal closure was less pronounced than that in ordinary non-mutant plants, and the associated increase in foliar ABA was correspondingly smaller. Similarly, waterlogging closed stomata of tomato plants within 24 h, but no such closure was seen in ‘flacca’, a corresponding ABA-deficient mutant. The results provide an example of stomatal closure brought about by stress in the root environment in the absence of water deficiency. The correlative factor operating between the roots and shoots appeared to be an inhibition of ABA transport out of the shoots of flooded plants, causing the hormone to accumulate in the leaves.  相似文献   
6.
The nitrate reductase (NR, EC 1.6.6.1) activity in root nodules formed by hydrogenase positive (Hup+) and hydrogenase negative (Hup) Rhizobium leguminosarum strains was examined in symbioses with the pea cultivar Alaska ( Pisum sativum L.), Rates of activity were determined by the in vivo assay in nodules from plants that were only N2-dependent or grown in the presence of 2 m M KNO3. The rates varied widely among strains, regardless of the Hup phenotype of the R. leguminosarum strain used for inoculation, but the overall results indicated that nodules formed by Hup strains accumulated more nitrite in the incubation medium than did those with Hup phenotypes. Total plant dry weight and reduced nitrogen content of pea plants grown in the presence of 2 m M KNO3 and inoculated with single Hup+ and Hup R. leguminosarum strains were statistically different among some strains. These observations suggest that the possible advantages derived from the presence of the Hup system on whole plant growth may be counteracted by the higher rates of NR activity in the Hup strains in the R. leguminosarum -pea symbiosis.  相似文献   
7.
Pisum sativum L. cv. Bodil was infected with various strains of Rhizobium leguminosarum (R501, 128c53, B155, 18a or 1044). The Rhizobium genotype influenced the activity of the plant enzyme phosphoenoipyruvate (PEP) carboxylase (EC 4.1.1.31), and the assimilation of fixed N in the root nodules. The specific activity of nodule PEP carboxylase was lowest in the symbioses, which accumulated the least total N (R501 and 128c53). The root bleeding sap of the less effective symbioses contained a lower proportion of asparagine and a higher proportion of glutamine than the more effective symbioses (B155,18a and 1044). The N yield of the symbioses was related neither to the net respiratory CO2 evolution of the root system nor to the nitrogenase linked nodule respiration. The lower yielding symbioses accumulated a larger proportion of the fixed N in the nodules due to a higher proportion of total dry weight contained in the nodule tissue. However, the concentration of soluble protein in the nodules of the lower-yielding symbioses was lower than that recorded for the higher yileding symbioses. The effect of the Rhizobium strains on N yield was maintained at maturity, and reflected in seed yields.  相似文献   
8.
Manabe, K. 1987. Low temperature spectrophotometry of the phototransformation of Pfr to Pr, in pelletable pea phytochrome.
Low temperature spectrophotometry was used to study the phototransformation of Pfr to Pr in 1000–7000 g pelletable fractions extracted from dark grown pea ( Pisum sativum L. cv. Alaska) epicotyls which had been irradiated with red and then far-red light. At -170°C, far-red irradiation of the pelletable phytochrome which had been pre-irradiated with saturating fluence of red light before freezing caused formation of an intermediate (named I660), the difference spectrum of which showed a marked ab-sorbance decrease at 740 nm and a concomitant small increase at about 660 nm. The inermediate I660 was converted to another intermediate (I660) when it was warmed above -80°C. The difference spectrum of this intermediate showed a positive peak at 670 nm. This intermediate was photoconverted to Pfr by red irradiation and also underwent dark reversion to Pfr at -60°C. I660 formed Pr if the temperature was above -10°C. The basic features of the phytochrome intermediates resemble those obtained in vivo and in degraded purified phytochrome.  相似文献   
9.
The gibberellin biosynthesis inhibitor uniconazol reduces both the elongation and indole-3-acetic acid content of growing Pisum sativum cv. Alaska intemodes. Both internode growth and indole-3-acetic acid content in uniconazol-treated plants can be elevated by gibberellin A3 treatment. The lengths of the growing intemodes are directly related to the indole-3-acetic acid contents.  相似文献   
10.
Addition of fruit cell wall extracts from two muskmelon cultivars into liquid media affected mycotoxin production by a strain of Myrothecium roridum pathogenic to muskmelon. Cell wall extracts from a susceptible cultivar (Iroquois) significantly increased toxin production while cell wall extracts from a resistant cultivar (Hales Best) significantly inhibited toxin production. Media containing 0.1 or 1.0 mg ml–1 stimulated toxin production more than media containing 10 or 100 mg ml–1 of cell wall extracts. Previous studies in our laboratory suggest that roridin E may be involved in virulence or pathogenicity of M. roridum; the present study indicates that cell wall polysaccharides as well as other materials present in cell wall preparations from susceptible host tissue provide a better substrate for toxin production than cell wall preparation from resistant host tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号