首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16795篇
  免费   1189篇
  国内免费   2015篇
  2024年   29篇
  2023年   211篇
  2022年   270篇
  2021年   350篇
  2020年   444篇
  2019年   471篇
  2018年   437篇
  2017年   475篇
  2016年   498篇
  2015年   449篇
  2014年   571篇
  2013年   777篇
  2012年   532篇
  2011年   562篇
  2010年   442篇
  2009年   575篇
  2008年   648篇
  2007年   718篇
  2006年   677篇
  2005年   779篇
  2004年   899篇
  2003年   816篇
  2002年   633篇
  2001年   654篇
  2000年   491篇
  1999年   590篇
  1998年   455篇
  1997年   424篇
  1996年   458篇
  1995年   475篇
  1994年   450篇
  1993年   429篇
  1992年   418篇
  1991年   331篇
  1990年   323篇
  1989年   274篇
  1988年   298篇
  1987年   215篇
  1986年   214篇
  1985年   211篇
  1984年   196篇
  1983年   76篇
  1982年   164篇
  1981年   119篇
  1980年   127篇
  1979年   81篇
  1978年   62篇
  1977年   70篇
  1976年   51篇
  1972年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end‐of‐life recycling rates (EOL‐RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in‐use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low‐cost (which thereby keeps down the price of scrap), many EOL‐RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL‐RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors.  相似文献   
3.
Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (?i) and converts that intercepted energy into biomass (?c). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase ?i and ?c; elevated O3 may have the opposite effect. Knowing if elevated CO2 and O3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20‐m diameter) were exposed to elevated CO2 (~550 μmol mol?1) and elevated O3 (1.2 × ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate ?i and ?c. A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in ?c , as ?i increased by only 3%. Though accelerated canopy senescence under elevated O3 caused a 3% decrease in ?i, the primary effect of O3 on biomass was through an 11% reduction in ?c. When CO2 and O3 were elevated in combination, CO2 partially reduced the negative effects of elevated O3. Knowing that changes in productivity in elevated CO2 and O3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on ?c for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.  相似文献   
4.
This study surveys the micromorphological surface structure of the leaves of the conifer genusAgathis (Araucariaceae) from throughout the range of the genus (Malaysia to New Zealand and Fiji) as seen with the scanning electron microscope. These data confirm that the vegetative parts ofAgathis are taxonomically highly conservative, but suggest the Melanesian and New Zealand elements to be distinctive from those of the rest of the genus, and from one another. Conclusions are compared with those that have been derived from studies based on other characters.  相似文献   
5.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
6.
Mitochondria mobilize iron from ferritin by a mechanism that depends on external FMN. With rat liver mitochondria, the rate of mobilization of iron is higher from rat liver ferritin than from horse spleen ferritin. With horse liver mitochondria, the rate of iron mobilization is higher from horse spleen ferritin than from rat liver ferritin. The results are explained by a higher affinity between mitochondria and ferritins of the same species. The mobilization of iron increases with the iron content of the ferritin and then levels off. A maximum is reached with ferritins containing about 1 200 iron atoms per molecule. The results represent further evidence that ferritin may function as a direct iron donor to the mitochondria.  相似文献   
7.
Increasing nest survival by excluding predators is a goal of many bird conservation programs. However, new exclosure projects should be carefully evaluated to assess the potential risks of disturbance. We tested the effectiveness of predator exclosure fences (hereafter, fences) for nests of critically endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) at a dry prairie site (Three Lakes; 2015–2018) and a pasture site (the Ranch; 2015–2016) in Osceola County, Florida, USA. We installed fences at nests an average of 8 days after the start of incubation, and nest abandonment after fence installation was rare (2 of 149 installations). Predation was the leading cause of failure for unfenced nests at both sites (48–73%). At Three Lakes, nest cameras revealed that mammals and snakes were responsible for 61.5% and 38.5% of predation events, respectively, at unfenced nests. Fences reduced the daily probability of predation (0.016 for fenced nests vs. 0.074 for unfenced nests). The probability that a fenced nest would survive from discovery to fledging was more than double that of unfenced nests (60.4% vs. 27.7%). However, we found no difference in daily nest survival at the Ranch between the year before nests were fenced (2015; 0.874) and the year when all but one nest were fenced (2016; 0.867) because red imported fire ants (Solenopsis invicta) were responsible for 86% of predation events at fenced nests at the Ranch. The use of cameras at fenced nests revealed that site‐specific differences in nest predators explained variation in fence efficiency between sites. Our fence design may be useful for other species of grassland birds, but site‐specific predator communities and species‐specific response of target bird species to fences should be assessed before installing fences at other sites.  相似文献   
8.
The Indochinese silvered langur (Trachypithecus germaini) is distributed to the west of Mekong River in Cambodia, Lao PDR, Thailand and Vietnam. During a two‐year study, from May 2014 to May 2016, we collected 320.44 hr of behavior, with 17,040 feeding bouts recorded (142 hr) for T. germaini on Chua Hang Karst Mountain, Kien Luong District, Kien Giang Province, Vietnam. Feeding accounted for 45% of the Indochinese silvered langurs’ activity budget. The plant diet of the Indochinese silvered langurs was principally composed of young leaves (58%), followed by mature leaves (9.5%), fruits (22.7%), flowers (4.7%), buds (3.3%), petioles (1.2%), and other (0.5%). A total of 58 plant species were fed on by the silvered langurs, and leaves of eight species (Phyllathus reticulatus, Ficus rumphii, Ficus tinctoria, Ficus microcarpa, Cayratia trifolia, Streblus ilicifolia, Combretum latifolium, and Streblus asper) were fed on throughout the year. P. reticulatus was most frequently eaten (13.9% feeding time, n = 1,733). Food selection differed significantly between months and seasons. The Indochinese silvered langurs ate 27 plant species in the wet season compared with 23 plant species in the dry season. Leaf chemical composition of two food categories, 16 eaten species (with 10 most frequently consumed species and six least consumed species), and four noneaten species, were analyzed. Feeding samples from eaten species in the Indochinese silvered langurs's diet contained lower amounts of condensed tannin, lignin, protein, ash, and lipids, but a higher amount of total sugar compared with samples from noneaten species. Furthermore, the most frequently consumed species contained lower amounts of lignin compared with the less frequently consumed species. Using a generalized linear model with five variables, including neutral detergent fiber (NDF), total sugar, lignin, lipid, and calcium (Ca) indicated that NDF positively correlated and lignin content negatively correlated with feeding records in the diet of these langur.  相似文献   
9.
10.
Markovska  Y.K.  Dimitrov  D.S. 《Photosynthetica》2001,39(2):191-195
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号