首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有5条查询结果,搜索用时 140 毫秒
1
1.
The purpose of this study was to generate the equivalent of a cholesterol/temperature phase map for a biological membrane using fluorescence spectroscopy. The pseudo-phase map was created using human erythrocytes treated with various concentrations of methyl-beta-cyclodextrin to remove defined amounts of cholesterol and a trio of fluorescent probes that assess different membrane properties (laurdan, diphenylhexatriene, and merocyanine 540). Parallel experiments with two-photon microscopy suggested that changes in cellular cholesterol content affected the entire membrane rather than being localized to specific macroscopic domains. The various regions of the composite erythrocyte pseudo-phase map were interpreted using analogous data acquired from multilamellar vesicles that served as simplified models of cholesterol-dependent phases. The vesicles consisted of various concentrations of cholesterol (0 to 50 mol%) with either palmitoyl sphingomyelin, 1:1 dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine, or phospholipid mixtures intended to simulate either the inner or outer leaflet of erythrocyte membranes. Four distinguishable regions were observed in sphingomyelin phase maps corresponding to the traditional solid-ordered and liquid-disordered phases and two types of liquid-ordered behavior. Physical properties were less diverse in the mixed phospholipid vesicles, as expected, based on previous studies. Erythrocytes displayed five regions of different combinations of membrane properties along the phase map. Some of the observations identified similarities between the cells and liquid-ordered behavior observed in the various types of liposomes as well as some interesting differences.  相似文献   
2.
Laurdan (6-lauroyl-2-dimethylaminonaphthalene) fluorescence spectroscopy has been applied to probe the physical status of the thylakoid membrane upon conversion of violaxanthin to zeaxanthin. So far, only phospholipid-dominated membranes have been studied by this method and hereby we report the first use of laurdan in mono- and digalactosyldiacylglycerol-dominated membrane systems. The generalised polarisation (GP) of laurdan was used as a measure of the structural effect of xanthophyll cycle pigments in isolated spinach (Spinacia oleracea) thylakoids and in model membrane vesicles composed of chloroplast galactolipids. Higher GP values indicate a membrane in a more ordered structure, whereas lower GP values point to a membrane in a less ordered fluid phase. The method was used to probe the effect of violaxanthin and zeaxanthin in thylakoid membranes at different temperatures. At 4, 25 and 37 °C the GP values for dark-adapted thylakoids in the violaxanthin-form were 0.55, 0.28 and 0.26. After conversion of violaxanthin to zeaxanthin, at the same temperatures, the GP values were 0.62, 0.36 and 0.34, respectively. GP values increased gradually upon conversion of violaxanthin to zeaxanthin. Similar results were obtained in the liposomal systems in the presence of these xanthophyll cycle pigments. We conclude from these results that the conversion of violaxanthin to zeaxanthin makes the thylakoid membrane more ordered.  相似文献   
3.
Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl3 was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 μM; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 μM concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 μm-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 μM to 100 μM.  相似文献   
4.
Lipoxygenases (LOXs) are lipid-peroxidizing enzymes that are involved in the metabolism of polyunsaturated fatty acids. Their biological activity includes a membrane binding process whose molecular details are not completely understood. The mechanism of enzyme–membrane interactions is thought to involve conformational changes at the level of the protein tertiary structure, and the extent of such alterations depends on the degree of structural flexibility of the different LOX isoforms. In this study, we have tested the resilience properties of a plant and a mammalian LOX, by using high pressure fluorescence measurements at different temperatures. The binding of LOXs to the lipid bilayer has been characterized using both large and giant unilamellar vesicles and electron transfer particles (inner mitochondrial membranes) as model membranes. The data indicate that the degree of LOXs' flexibility is strictly dependent on the two distinct N- and C-terminal domains that characterize the 3D structure of these enzymes. Furthermore, they demonstrate that increasing the rigidity of protein scaffolding by the presence of an active site ligand impairs the membrane binding ability of LOXs. These findings provide evidence that the amphitropic nature of LOXs is finely tuned by the interaction of the substrate with the residues of the active site, suggesting new strategies for the design of enzyme inhibitors.  相似文献   
5.
Diclofenac, a nonsteroidal anti-inflammatory drug (NSAID), has been widely investigated in terms of its pharmacological action, but less is known about its effects on cell membranes and particularly on those of human erythrocytes. In the present work, the structural effects on the human erythrocyte membrane and molecular models have been investigated and reported. This report presents the following evidence that diclofenac interacts with red cell membranes: a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that diclofenac interacted with a class of lipids found in the outer moiety of the erythrocyte membrane; b) in isolated unsealed human erythrocyte membranes (IUM) the drug induced a disordering effect on the acyl chains of the membrane lipid bilayer; c) in scanning electron microscopy (SEM) studies on human erythrocytes it was observed that the drug induced changes different from the normal biconcave morphology of most red blood cells. This is the first time in which structural effects of diclofenac on the human erythrocyte membrane have been described.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号