首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3609篇
  免费   685篇
  国内免费   1387篇
  2024年   27篇
  2023年   154篇
  2022年   127篇
  2021年   185篇
  2020年   314篇
  2019年   322篇
  2018年   262篇
  2017年   303篇
  2016年   279篇
  2015年   256篇
  2014年   276篇
  2013年   324篇
  2012年   236篇
  2011年   236篇
  2010年   206篇
  2009年   241篇
  2008年   219篇
  2007年   223篇
  2006年   198篇
  2005年   177篇
  2004年   145篇
  2003年   150篇
  2002年   115篇
  2001年   110篇
  2000年   107篇
  1999年   73篇
  1998年   66篇
  1997年   55篇
  1996年   34篇
  1995年   35篇
  1994年   29篇
  1993年   17篇
  1992年   21篇
  1991年   16篇
  1990年   19篇
  1989年   17篇
  1988年   14篇
  1987年   6篇
  1986年   18篇
  1985年   8篇
  1984年   12篇
  1983年   5篇
  1982年   14篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1958年   2篇
排序方式: 共有5681条查询结果,搜索用时 31 毫秒
1.
2.
3.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
4.
5.
Fire has historically been an important ecological component of forests in the Intermountain Region of the northwestern United States. This study is set in a small biogeographically disjunct mountain range. Our research objectives were to (1) investigate the historical frequency, severity, size, and spatial pattern of fire; (2) determine if and how fire regimes have changed since Euro-American settlement; and (3) compare how fire regimes of a small isolated range compare to nearby, but considerably larger, mountain agglomerations. Our findings suggest that this mountain range has historically supported fires typified by small size and high frequency, resulting in a high degree of spatial pattern complexity compared to mountain agglomerations. We also found disparity in size and burn severity solely within the study area based on the bisecting Continental Divide. Since the advent of Euro-American settlement in the 1870s, fire frequency and sizes of individual fires in the West Big Hole Range have significantly decreased resulting in an estimated 87% reduction in area burned. We discuss potential relationships of mountain range isolation and fire regimes in the Intermountain Region. Furthermore, we suggest that the relative small size of this mountain range predisposes it to greater anthropogenic effects upon fire occurrence.  相似文献   
6.
7.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
8.
The little known endemic Henderson Island rail (or Henderson rail) Porzflna atra , inhabits forest on the coastal plain and upraised plateau of Henderson Island. Rails were studied for 15 months from January 1991 to March 1992. The population was estimated at c. 6200 individuals living in pairs or cooperative groups of 3–4 adults on territories averaging about 1 ha. Two or three eggs were laid in covered or open nests near the ground from mid-July to mid-February. Up to five consecutive nesting attempts were made in cases where eggs or young chicks were lost. Adults laid a second clutch when chicks were fully feathered at about one month of age. Both sexes incubated and helped rear the young. Older chicks sometimes helped feed younger siblings. Dispersal of juveniles from the natal territory took place in April. Adult birds underwent a rapid, simultaneous post-nuptial moult of the remiges in February-April; the post-juvenile moult involved body feathers only. Data on morphometries, breeding ecology, courtship behaviour and voice are compared with available information for the spotless crake P. tabuensis , the Henderson rail's closest relative and probable ancestor. These comparisons provide some information on how these two taxa have differentiated since rails arrived on Henderson Island some time in the last 380000 years.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号