首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   20篇
  国内免费   87篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   16篇
  2019年   16篇
  2018年   22篇
  2017年   13篇
  2016年   9篇
  2015年   12篇
  2014年   17篇
  2013年   30篇
  2012年   30篇
  2011年   21篇
  2010年   14篇
  2009年   23篇
  2008年   21篇
  2007年   23篇
  2006年   24篇
  2005年   21篇
  2004年   16篇
  2003年   22篇
  2002年   16篇
  2001年   8篇
  2000年   11篇
  1999年   8篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有443条查询结果,搜索用时 31 毫秒
1.
In a medium containing 40 g ethanol l–1, laccase production by Trametes versicolor was 2.6 unit per ml of the supernatant, which was over 20 times higher than that without ethanol. Laccase activity with ethanol was quite comparable to that with the well-known inducers such as veratryl alcohol, xylidine and guaiacol. With other white-rot fungi, Coriolus hirsutus and Grifola frondosa, ethanol had a similar stimulatory effect on laccase production.  相似文献   
2.
The mushroom Flammulina velutipes and the white-rot fungus Trametes versicolor were cultivated separately on sugarcane bagasse for 40 days. Trametes versicolor produced laccase and manganese-peroxidase activities, showing a simultaneous degradation of lignin and holocellulose. However, only phenoloxidase activity was found with Flammulina velutipes. A preferential degradation of lignin was detected in F. velutipes, which exhibited a greater reduction in the ratio of weight loss to lignin loss than T. versicolor. A decrease in the syringyl/guaiacyl ratio observed with both fungi indicated the preferential degradation of non-condensed (syringyl-type) lignin units. An increase in the relative abundance of aromatic carboxylic acids suggested that the oxidative transformation of lignin unit side-chains was occurring. This was more noticeable with Flammulina velutipes than with T. versicolor.  相似文献   
3.
Localisation of degradative enzymes in white-rot decay of lignocellulose   总被引:1,自引:0,他引:1  
The use of immunogold-cytochemical labelling techniques in electron microscopy of wood infected by basidiomycete fungi has assisted in the elucidation of the localisation of enzymes which degrade lignocellulose. The use of specific immunocytochemical techniques is discussed with respect to the authenticity and accuracy of the methods, the use of adequate controls in the gold-labelling procedure, and the immunospecificity of the antibodies.Localisation of the lignin-degrading enzymes, lignin-peroxidase and laccase, has shown that these enzymes do not bind to wood cell walls unless the process of decay has already commenced. Similarly localisation of cellulases Endoglucanase II (EGII) and Cellobiohydrolase I (CBHI) has shown that these enzymes only bind to exposed ends of cellulose fibrils and to partially degraded areas of the wood cell wall. -Glucosidase is always immobilised within the extracellular polysaccharide layer surrounding fungal hyphae.This review postulates that there is regulation of the release sequence of these lignocellulolytic enzymes defining the spatial arrangement between the hyphae and the wood cell wall. This hypothesis is presented diagrammatically.  相似文献   
4.
烟梗是烟草工业的重要副产物,也是宝贵的自然资源。本研究首先利用白腐菌漆酶对烟梗丝进行预处理,提升了添加烟梗丝的卷烟品质;然后分别以木质素、纤维素、半纤维素和果胶的降解率为响应值,采用Box-Behnken设计建立方程模型,对漆酶、纤维素酶、半纤维素酶和果胶酶组成的复合酶预处理烟梗丝条件进行了优化。结果表明:每100g烟梗丝加入30U漆酶,在料液比为35%、温度为30℃、酶解pH为5处理48h的条件下预处理的烟梗丝对提升卷烟品吸效果最佳,烟梗丝中木质素、纤维素、半纤维素和果胶的降解率分别为20.16%、15.10%、7.20%和12.40%;为获得与之相同的各组分降解率,响应面法优化漆酶复合酶最佳处理条件为:每100g烟梗丝加入漆酶14.72U、纤维素酶1.00U、半纤维素酶1.00U、果胶酶8.45U。验证发现烟梗丝各组分降解率实测值与理论值无显著性差异,且显微结构观察显示复合酶处理后的烟梗丝表面致密结构被破坏,孔洞数量明显增加。本研究获得的白腐菌漆酶预处理后的烟梗丝在卷烟中的添加能有效改善卷烟品质,且漆酶复合酶的使用大幅减少了漆酶的用量,降低了漆酶预处理烟梗丝的成本,为废弃烟梗生物质的资源化利用提供了重要依据。  相似文献   
5.
为了探明漆酶在斑玉蕈生长发育过程中的功能,对斑玉蕈转录测序预测的13个漆酶基因序列进行分析、鉴定和构建分子系统发育树;检测了不同生长发育时期漆酶的活性和漆酶基因表达水平。研究结果显示:13个基因片段中有10个是漆酶基因。不同的漆酶同工酶之间进化关系存在明显差异,大多数漆酶与木腐菌(金针菇Flammulina filiformis和侧耳属Pleurotus)进化关系较近。对斑玉蕈不同生长发育时期的酶活检测结果显示,从斑玉蕈的菌丝恢复期到钉头期,漆酶活性逐渐升高,而在子实体形成后期酶活逐渐降低。对培养40d、60d和80d的菌丝样品以及不同生长发育时期的样品进RT-qPCR检测,结果显示在菌丝营养生长时期,大多数漆酶基因在第40-60天表达量持续增加1-3倍,而在第60-80天时表达量出现降低的情况。而在生殖生长时期,大多数漆酶基因在转色期或者原基期相对表达量达到最大值,并在子实体期出现降低,这与漆酶活性的检测具有一致性。lcc3lcc7lcc8lcc9在斑玉蕈生殖生长过程中相对表达量出现了10-100倍的上调。这说明从菌丝培养到菌丝扭结形成子实体和子实体发育的过程中,不同的漆酶可能发挥着不同的作用,表达量较高的漆酶基因可能对基质降解和子实体形成起主要作用。  相似文献   
6.
Myrothecium verrucaria NF-05 is a deuteromycete fungus capable of producing a white laccase. The optimal concentration of Cu2+ for laccase production by this strain is 0.2 mM (43.23 ± 1.16 U mL? 1). A comprehensive investigation of the induction demonstrated that NF-05 laccase production could be synergistically enhanced by various inducers, including aromatic phenols, amines and recalcitrant dyes, in the presence of 0.2 mM Cu2+. Sixteen phenols, fourteen amines and four dyes exhibited significant inductive effects on laccase production. The best inducer was 3, 3’-dimethylbenzidine, which increased laccase production to 258.1 ± 11.1 U mL? 1. These results suggest that M. verrucaria NF-05 is a promising industrial laccase producer. Based on the increased production, purified NF-05 laccase was used to decolorize dyes of various structural types in the presence of six redox mediators. Among the 26 tested dyes, the decolorization rate of six azo dyes, chromotrope 2R, orange G6, Congo red, Ponceau S, amaranth and reactive yellow 135 and two arylmethane dyes, fast green 3 and neutral red, were significantly increased by each of the six mediators. These results demonstrate the potential use of the NF-05 laccase for the decolorization of recalcitrant dyes in dye bleaching and effluent detoxification.  相似文献   
7.
Abstract

During directed evolution to functionally express the high redox potential laccase from the PM1 basidiomycete in Saccharomyces cerevisiae, the characteristic maximum absorption at the T1 copper site (Abs610T1Cu) was quenched, switching the typical blue colour of the enzyme to yellow. To determine the molecular basis of this colour change, we characterized the original wild-type laccase and its evolved mutant. Peptide printing and MALDI-TOF analysis confirmed the absence of contaminating protein traces that could mask the Abs610T1Cu, while conservation of the redox potential at the T1 site was demonstrated by spectroelectrochemical redox titrations. Both wild-type and evolved laccases were capable of oxidizing a broad range of substrates (ABTS, guaiacol, DMP, synapic acid) and they displayed similar catalytic efficiencies. The laccase mutant could only oxidize high redox potential dyes (Poly R-478, Reactive Black 5, Azure B) in the presence of exogenous mediators, indicating that the yellow enzyme behaves like a blue laccase. The main consequence of over-expressing the mutant laccase was the generation of a six-residue N-terminal acidic extension, which was associated with the failure of the STE13 protease in the Golgi compartment giving rise to alternative processing. Removal of the N-terminal tail had a negative effect on laccase stability, secretion and its kinetics, although the truncated mutant remained yellow. The results of CD spectra analysis suggested that polyproline helixes were formed during the directed evolution altering spectral properties. Moreover, introducing the A461T and S426N mutations in the T1 environment during the first cycles of laboratory evolution appeared to mediate the alterations to Abs610T1Cu by affecting its coordinating sphere. This laccase mutant is a valuable departure point for further protein engineering towards different fates.  相似文献   
8.
本文旨在研究阿魏蘑菌体形态与漆酶产量之间的关系。结果显示,玻璃珠的添加可改变发酵过程中菌体形态,漆酶产量在球状菌体条件下高于丝状、絮状菌丝:直径分布在0.2~0.4 mm范围的菌球对漆酶的合成具有明显的促进作用;适合的葡萄糖、玉米粉和麸皮添加量,对直径在0.2~0.4 mm范围的菌球形成具有重要影响。此外,添加惰性载体同样可以控制菌球的直径分布,但对漆酶的合成无促进作用。  相似文献   
9.
Some enzymatic properties were examined with the purified alkaline proteinase from Aspergillus candidus. The isoelectric point was determined to be 4.9 by polyacrylamide gel disc electrofocusing. The optimum pH for milk casein was around 11.0 to 11.5 at 30°C. The maximum activity was found at 47°C at pH 7.0 for 10 min. The enzyme was stable between pH 5.0 and 9.0 at 30°C and most stable at pH 6.0 at 50°C. The enzyme activity over 95% remained at 40°C, but was almost completely lost at 60°C for 10 min. Calcium ions protected the enzyme from heat denaturation to some extent. No metal ions examined showed stimulatory effect and Hg2+ ions inhibited the enzyme. The enzyme was also inhibited by potato inhibitor and diisopropylphosphorofluoridate, but not by metal chelating agent or sulfhydryl reagents. A. candidus alkaline proteinase exhibited immunological cross-reacting properties similar to those of alkaline proteinases of A. sojae and A. oryzae.  相似文献   
10.
Operating the saccharification and fermentation processes at high‐substrate loadings is a key factor for making ethanol production from lignocellulosic biomass economically viable. However, increasing the substrate loading presents some disadvantages, including a higher concentration of inhibitors (furan derivatives, weak acids, and phenolic compounds) in the media, which negatively affect the fermentation performance. One strategy to eliminate soluble inhibitors is filtering and washing the pretreated material. In this study, it was observed that even if the material was previously washed, inhibitory compounds were released during the enzymatic hydrolysis step. Laccase enzymatic treatment was evaluated as a method to reduce these inhibitory effects. The laccase efficiency was analyzed in a presaccharification and simultaneous saccharification and fermentation process at high‐substrate loadings. Water‐insoluble solids fraction from steam‐exploded wheat straw was used as substrate and Saccharomyces cerevisiae as fermenting microorganism. Laccase supplementation reduced strongly the phenolic content in the media, without affecting weak acids and furan derivatives. This strategy resulted in an improved yeast performance during simultaneous saccharification and fermentation process, increasing significantly ethanol productivity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号