首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
  4篇
  2023年   1篇
  2014年   1篇
  2005年   1篇
  1985年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The interaction between poly(l-lysines) of varying size with cardiolipin was investigated via binding assays, X-ray diffraction, freeze-fracture electron microscopy, and 31P- and 13C-NMR. Binding of polylysines to the lipid only occurred when three or more lysine residues were present per molecule. The strength of the binding was highly dependent on the polymerization degree, suggesting a cooperative interaction of the lysines within the polymer. Upon binding, a structural reorganization of the lipids takes place, resulting in a closely packed multilamellar system in which the polylysines are sandwiched in between subsequent bilayers. Acyl chain motion is reduced in these liquid-crystalline peptide-lipid complexes. From competition experiments with Ca2+ it could be concluded that when the affinity of the polylysine for cardiolipin was much larger than that of Ca2+, a lamellar polylysine-lipid complex was formed, irrespective of whether an excess of Ca2+ was added prior to or after the polypeptide. When the affinity of the polylysine for cardiolipin was less or of the same order as that of Ca2+, the lipid was organized in the hexagonal HII phase in the presence of Ca2+. These results are discussed in the light of the peptide specificity of bilayer (de)stabilization in cardiolipin model membranes.  相似文献   
2.
Tumor cells exhibit drug resistant phenotypes that decrease the efficacy of chemotherapeutic treatments. The drug resistance has a genetic basis that is caused by an abnormal gene expression. There are several types of drug resistance: efflux pumps reducing the cellular concentration of the drug, alterations in membrane lipids that reduce cellular uptake, increased or altered drug targets, metabolic alteration of the drug, inhibition of apoptosis, repair of the damaged DNA, and alteration of the cell cycle checkpoints ( and ). siRNA is used to silence the drug resistant phenotype and prevent this drug resistance response. Of the listed types of drug resistance, pump-type resistance (e.g., high expression of ATP-binding cassette transporter proteins such as P-glycoproteins (Pgp; also known as multi-drug resistance protein 1 or MDR1, encoded by the ATP-Binding Cassette Sub-Family B Member 1 (ABCB1) gene)) and apoptosis inhibition (e.g., expression of anti-apoptotic proteins such as Bcl-2) are the most frequently targeted for gene silencing. The co-delivery of siRNA and chemotherapeutic drugs has a synergistic effect, but many of the current projects do not control the drug release from the nanocarrier. This means that the drug payload is released before the drug resistance proteins have degraded and the drug resistance phenotype has been silenced. Current research focuses on cross-linking the carrier's polymers to prevent premature drug release, but these carriers still rely on environmental cues to release the drug payload, and the drug may be released too early. In this review, we studied the release kinetics of siRNA and chemotherapeutic drugs from a broad range of carriers. We also give examples of carriers used to co-deliver siRNA and drugs to drug-resistant tumor cells, and we examine how modifications to the carrier affect the delivery. Lastly, we give our recommendations for the future directions of the co-delivery of siRNA and chemotherapeutic drug treatments.  相似文献   
3.
5-氨基戊酸(5-aminovalanoic acid,5AVA)可作为新型塑料尼龙5和尼龙56的前体,是合成聚酰亚胺的有前途的平台化合物。目前5-氨基戊酸的生物合成法普遍产率较低且合成过程复杂,成本高。为实现5AVA的绿色生物合成,本研究通过组合表达来自日本白腹鲭(Scomber japonicas)的L-赖氨酸α-氧化酶、来自乳酸乳球菌(Lactococcus lactis)的α-酮酸脱羧酶和来自大肠杆菌(Escherichia coli)的醛脱氢酶,在大肠杆菌中建立了一条以L-赖氨酸为原料,以2-酮-6-氨基己酸盐为中间产物生物合成5AVA的途径。在葡萄糖浓度为55 g/L,赖氨酸盐酸盐40 g/L的初始条件下,最终消耗158 g/L的葡萄糖和144 g/L的赖氨酸盐酸盐,补料分批发酵产生了57.52 g/L的5AVA,摩尔得率为0.62 mol/mol。与文献报道的以2-酮-6-氨基己酸盐为中间产物的5AVA生物合成途径相比,本文报道的新途径无需使用乙醇和双氧水,且5AVA产量进一步提高。  相似文献   
4.
Toward more efficient L-lysine production, we have been challenging genome-based strain breeding by the approach of assembling only relevant mutations in a single wild-type background. Following the creation of a new L-lysine producer Corynebacterium glutamicum AHP-3 that carried three useful mutations (lysC311, hom59, and pyc458) on the relevant downstream pathways, we shifted our target to the pentose phosphate pathway. Comparative genomic analysis for the pathway between a classically derived L-lysine producer and its parental wild-type identified several mutations. Among these mutations, a Ser-361-->Phe mutation in the 6-phosphogluconate dehydrogenase gene (gnd) was defined as a useful mutation for L-lysine production. Introduction of the gnd mutation into strain AHP-3 by allelic replacement led to approximately 15% increased L-lysine production. Enzymatic analysis revealed that the mutant enzyme was less sensitive than the wild-type enzyme to allosteric inhibition by intracellular metabolites, such as fructose 1,6-bisphosphate, D-glyceraldehyde 3-phosphate, phosphoribosyl pyrophosphate, ATP, and NADPH, which were known to inhibit this enzyme. Isotope-based metabolic flux analysis demonstrated that the gnd mutation resulted in 8% increased carbon flux through the pentose phosphate pathway during L-lysine production. These results indicate that the gnd mutation is responsible for diminished allosteric regulation and contributes to redirection of more carbon to the pentose phosphate pathway that was identified as the primary source for NADPH essential for L-lysine biosynthesis, thereby leading to improved product formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号