首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   
2.
Abstract: Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving β-and α1-adrenergic receptors. The effects of N -monomethyl- l -arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited β-adrenergic stimulation of cGMP formation as well as α1-adrenergic potentiation of β-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of l -arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.  相似文献   
3.
In most cells, cationic amino acids such as l-arginine, l-lysine, and l-ornithine are transported by cationic (CAT) and y+L (y+LAT) amino acid transporters. In human erythrocytes, the cysteine-modifying agent N-ethylmaleimide (NEM) has been shown to inhibit system y+ (most likely CAT-1), but not system y+L (Devés, R., Angelo, S., and Chávez, P. (1993) J. Physiol. 468, 753–766). We thus wondered if sensitivity to NEM distinguishes generally all CAT and y+LAT isoforms. Transport assays in Xenopus laevis oocytes established that indeed all human CATs (including the low affinity hCAT-2A), but neither y+LAT isoform, are inhibited by NEM. hCAT-2A inhibition was not due to reduced transporter expression in the plasma membrane, indicating that NEM reduces the intrinsic transporter activity. Individual mutation of each of the seven cysteine residues conserved in all CAT isoforms did not lead to NEM insensitivity of hCAT-2A. However, a cysteine-less mutant was no longer inhibited by NEM, suggesting that inhibition occurs through modification of more than one cysteine in hCAT-2A. Indeed, also the double mutant C33A/C273A was insensitive to NEM inhibition, whereas reintroduction of a cysteine at either position 33 or 273 in the cysteine-less mutant led to NEM sensitivity. We thus identified Cys-33 and Cys-273 in hCAT-2A as the targets of NEM inhibition. In addition, all proteins with Cys-33 mutations showed a pronounced reduction in transport activity, suggesting that, surprisingly, this residue, located in the cytoplasmic N terminus, is important for transporter function.  相似文献   
4.
Supplementation with l-arginine can increase uterine arterial blood flow and vascular perfusion of the preovulatory follicle in mares. Increased vascular perfusion of the preovulatory follicle has been correlated with successful pregnancy in mares. The objective of this study was to determine if supplemental l-arginine would increase ovarian arterial blood flow, vascular perfusion of the preovulatory follicle, and embryo recovery rates in mares. Mares were blocked by age and breed and assigned at random within block to l-arginine supplementation or control groups. Mares were fed l-arginine beginning 17 days before and through the duration of the study. Transrectal Doppler ultrasonography was used to measure ovarian arterial blood flow and vascular perfusion of the preovulatory follicle daily when it reached 35 mm and subsequent CL on Days 2, 4, and 6. Mares, on achieving a follicle of 35 mm or more were bred via artificial insemination and an embryo collection was attempted 7 days after ovulation. Treatment did not affect interovulatory interval (arginine-treated, 18.1 ± 2.6 days; control, 20.7 ± 2.3 days) or embryo recovery rate (arginine-treated, 54%; control, 48%). Mares treated with l-arginine had a larger follicle for the 10 days preceding ovulation than control mares (30.4 ± 1.2 and 26.3 ± 1.3 mm, respectively; P < 0.05) and vascular perfusion of the dominant follicle tended (P = 0.10) to be greater for the 4 days before ovulation. No differences were observed between groups in diameter or vascular perfusion of the CL. Resistance indices, normalized to ovulation, were not significantly different between groups during the follicular or luteal phase. Oral l-arginine supplementation increased the size and tended to increase perfusion of the follicle 1, but had no effect on luteal perfusion or embryo recovery rates in mares.  相似文献   
5.
Summary. This study examines the relationship between traditional risk factors of coronary artery disease and indicators involved in the metabolism of l-arginine (plasma and urine l-arginine, plasma l-citrulline, serum creatinine and urine orotic acid). Our study population consisted of 40 healthy male volunteers aged between 35 and 55 years. We found an inverse association between serum creatinine and blood pressure, between plasma l-citrulline and blood pressure, as well as between urine l-arginine and blood pressure. We also found a positive association between plasma LDL-cholesterol and urine l-arginine and a negative correlation between plasma l-arginine and LDL-cholesterol. Orotic acid measured from urine was not associated with any of the indicators of l-arginine metabolism. Our results indicate that l-arginine metabolism is of profound significance for cardiovascular health. However, our study does not answer questions relating to causality. Further studies are needed to clarify the causal relationship between cardiovascular risk factors, especially elevated blood pressure and high LDL-cholesterol, and indicators of l-arginine metabolism. Received January 18, 1999  相似文献   
6.
Abstract: Elevated activities of nitric oxide synthase (NOS) have been reported previously in the brains of portacaval-shunted (PCS) rats, a model of chronic hepatic encephalopathy (HE). As l -arginine availability for nitric oxide synthesis depends on a specific uptake mechanism in neurons, we studied the kinetics of l -[3H]-arginine uptake into synaptosomes prepared from the brains of PCS rats. Results demonstrate that l -arginine uptake is significantly increased in cerebellum (60%; p < 0.01), cerebral cortex (42%; p < 0.01), hippocampus (56%; p < 0.01), and striatum (51%; p < 0.01) of PCS rats compared with sham-operated controls. Hyperammonemia in the absence of portacaval shunting also stimulated the transport of l -[3H]arginine; kinetic analysis revealed that the elevated uptake was due to increased uptake capacity ( V max) without any change in affinity ( K m). Incubation of cerebellar synaptosomes with ammonium acetate for 10 min caused a dose-dependent stimulation of l -[3H]arginine uptake. Neither portacaval shunting nor hyperammonemia had any significant effect on the synaptosomal uptake of N G-nitro- l -[3H]arginine. These studies demonstrate that increased NOS activity observed in experimental HE may result from increased availability of l -arginine resulting from a direct stimulatory effect of ammonia on l -arginine transport.  相似文献   
7.
Induction of Nitric Oxide Synthase in Glial Cells   总被引:28,自引:0,他引:28  
Primary astrocyte cultures, C6 glioma cells, and N18 neuroblastoma cells were assayed for nitric oxide synthase (NOS) activity with a bioassay of cyclic GMP production in RFL-6 fibroblasts. Treatment of astrocyte cultures for 16-18 h with lipopolysaccharide (LPS) induced NOS-like activity that was L-arginine and NADPH dependent, Ca2+ independent, and potentiated by superoxide dismutase. Induction was evident after 4 h, was dependent on the dose of LPS, and required protein synthesis. Treatment of astrocyte cultures with leucine methyl ester reduced microglial cell contamination from 7 to 1%, with a loss of 44% of NOS-like activity. C6 cells treated with LPS also showed Ca(2+)-independent and L-arginine-dependent NOS-like activity. N18 cells demonstrated constitutive Ca(2+)-dependent NOS-like activity that was not enhanced by LPS induction. These data indicate that NOS-like activity can be induced in microglia, astrocytes, and a related glioma cell line as it can in numerous other cell types, but not in neuron-like N18 cells.  相似文献   
8.
Abstract: We studied the effect of cultured endothelial cells on the secretion of catecholamines by cultured bovine chromaffin cells. Chromaffin cell catecholamine secretion was stimulated by either boluses of potassium (K+) or the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP). Endothelial cells inhibited the catecholamine release and stimulatory effects of K+ and DMPP. This inhibition increased with time, and in 25 min the initial stimulated secretory response (100%) to 30 m M K+ or 25 μ M DMPP dropped to 45 ± 3% and 53.5 ± 2.3%, respectively. This endothelial cell-induced inhibition was blocked by the nitric oxide synthase inhibitors N -nitro- l -arginine methyl ester ( l -NAME) and N -monoethyl- l -arginine ( l -NMMA), and by the guanylate cyclase inhibitor methylene blue, indicating that the l -arginine/nitric oxide/ cyclic GMP pathway is involved in this endothelial cell-chromaffin cell interaction. In the absence of endothelial cells, incubation of chromaffin cells with l -NAME, l -NMMA, or methylene blue also augmented the secretagogue-induced catecholamine secretion, indicating that nitric oxide from chromaffin cells could be implicated in an autoinhibitory process of catecholamine release. These results provide indirect evidence for the presence of nitric oxide synthase in bovine adrenomedullary chromaffin cells. Our results show that there is an autoinhibitory mechanism of catecholamine release in chromaffin cells and that an additional level of inhibition is observed when cultured vascular endothelial cells are present. These two inhibitory processes may have different origins, but they appear to converge into a common pathway, the l -arginine/nitric oxide synthase/guanylate cyclase pathway.  相似文献   
9.
Abstract: In this work, we have studied the effects of pure nitric oxide (NO) on the regulation of catecholamine (CA) secretion by chromaffin cells, as well as the possible presence of its synthesizing enzyme l -arginine:NO synthase (NOS) in these cells. Our results show that NO produces a large stimulation of basal CA secretion. This effect was calcium- and concentration-dependent (EC50 = 64 ± 8 µ M ) and was not due to nonspecific damage of the tissue by NO. NO also modulates the CA secretion evoked by nicotine in a dose-dependent manner. Although it has a stimulatory effect on the CA secretion evoked by low doses of nicotine (<3 µ M ; EC50 = 16 ± 3 µ M ), it produces a dose-dependent inhibition of the CA secretion induced by high doses of nicotine (≥30 µ M ; IC50 = 52 ± 6 µ M ). The mechanism by which NO modulates CA secretion seems to be through the increase in the cyclic GMP levels, because there was a close correlation between the CA secretion and the cyclic GMP levels. The presence of a specific activity of NOS in chromaffin cells has been demonstrated by two independent methods: release of [14C]citruiline from [14C]arginine and formation of an NO-hemoglobin complex. NOS activity was about 0.5 pmol/min/mg of protein. It was calcium- and mainly calmodulin-dependent and could be specifically blocked by the NOS inhibitor N -methyl- l -arginine. These results suggest that NO could be an important intracellular messenger in the regulation of neurosecretion in chromaffin cells.  相似文献   
10.
Abstract: We examined the modulation of nitric oxide production in vivo by measuring levels of nitrite (NO2) and nitrate (NO3) in the dialysate of the cerebellum in conscious rats, by using an in vivo brain microdialysis technique. The levels of both NO2 and NO3 were decreased by the intraperitoneal injection of N G-nitro- l -arginine methyl ester, an inhibitor of nitric oxide synthase, whereas N G-nitro- d -arginine methyl ester had no effect. l -Arginine by itself increased NO2 and NO3 levels and diminished the reduction of their levels caused by N G-nitro- l -arginine methyl ester. Direct infusion of l -glutamate, N -methyl- d -aspartate, or KCl into the cerebellum through a dialysis probe resulted in an increase in NO2 and/or NO3 levels. The effects of N -methyl- d -aspartate and KCl were dependent on extracellular calcium. Furthermore, the stimulatory effects of l -glutamate and N -methyl- d -aspartate were inhibited by N G-nitro- l -arginine methyl ester and (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), an N -methyl- d -aspartate receptor antagonist. These results suggest that NO2 and NO3 levels may be related to nitric oxide production in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号