首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
Serotonin (5-HT) plays an important role in the seizures of El mice since the seizure threshold of El mice correlates with the 5-HT concentration in the central nervous system. In this study, the anticonvulsant effect of a 5-HT reuptake blocker, citalopram, was evaluated behaviorally and biochemically. El mouse convulsions were inhibited by oral administration of citalopram for 2 weeks. Citalopram increased tryptophan and tyrosine amounts, and decreased the 5-HT, 5-hydroxy-indoleacetic acid, kynurenine, and dopamine amounts in the brain. These findings show that citalopram depresses monoaminergic metabolism. Given the known convulsant effect of kynurenine, it is suggested that its decrease by citalopram may involve attenuation of El mice seizures.  相似文献   
2.
Daptomycin is a cyclic lipopeptide natural product produced by Stretptomyces roseosporus, displaying good bactericidal activity against a wide range of gram‐positive pathogens. Daptomycin contains a 13 amino acid and kynurenine (Kyn) is essential for optimal activity of daptomycin. In this study, we characterized the Kyn pathway in S. roseosporus and investigated its role in supplying precursor for daptomycin biosynthesis. Two genes (dptJ and tdo) coding for tryptophan‐2,3‐dioxgenase existed in the chromosome. dptJ is located in the daptomycin biosynthetic gene cluster, while tdo is in other locus. Disruption of dptJ or tdo resulted in reduced yield by ~50%. The introduction of an additional copy of dptJ but not tdo led to enhanced production of daptomycin by 110%. Furthermore, disruption of kyn encoding kynureninase showed improved daptomycin productivity by 30%. Our results demonstrated that the enhancement of Kyn supply through metabolic engineering approach is an efficient way to increase daptomycin production. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:847–852, 2013  相似文献   
3.
Aedes (Stegomyia) albopictus, also known as the Asian tiger mosquito, is a mosquito which originated in Asia. In recent years, it has become increasingly rampant throughout the world. This mosquito can transmit several arboviruses, including dengue, Zika and chikungunya viruses, and is considered a public health threat. Despite the urgent need of genome engineering to analyze specific gene functions, progress in genetical manipulation of Ae. albopictus has been slow due to a lack of efficient methods and genetic markers. In the present study, we established targeted disruptions in two genes, kynurenine hydroxylase (kh) and dopachrome conversion enzyme (yellow), to analyze the feasibility of generating visible phenotypes with genome editing by the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) system in Ae. albopictus. Following Cas9 single guide RNA ribonucleoprotein injection into the posterior end of pre-blastoderm embryos, 30%-50% of fertile survivors produced alleles that failed to complement existing kh and yellow mutations. Complete eye and body pigmentation defects were readily observed in GI pupae and adults, indicating successful generation of highly heritable mutations. We conclude that the CRISPR/Cas9-mediated gene editing system can be used mAe. albopictus and that it can be adopted as an efficient tool for genome-scale analysis and biological study.  相似文献   
4.
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.  相似文献   
5.
6.
L-Kynurenine and quinolinic acid are neuroactive L-tryptophan-kynurenine pathway metabolites of potential importance in pathogenesis and treatment of neurologic disease. To identify precursors of these metabolites in brain, [(2)H(3) ]-L-kynurenine was infused subcutaneously by osmotic pump into three groups of gerbils: controls, CNS-localized immune-activated, and systemically immune-activated. The specific activity of L-kynurenine and quinolinate in blood, brain and systemic tissues at equilibrium was then quantified by mass spectrometry and the results applied to a model of metabolism to differentiate the relative contributions of various metabolic precursors. In control gerbils, 22% of L-kynurenine in brain was derived via local synthesis from L-tryptophan/formylkynurenine versus 78% from L-kynurenine from blood. Quinolinate in brain was derived from several sources, including: local tissue L-tryptophan/formylkynurenine (10%), blood L-kynurenine (35%), blood 3-hydroxykynurenine/3-hydroxyanthranilate (7%), and blood quinolinate (48%). After systemic immune-activation, however, L-kynurenine in brain was derived exclusively from blood, whereas quinolinate in brain was derived from three sources: blood L-kynurenine (52%), blood 3-hydroxykynurenine or 3-hydroxyanthranilate (8%), and blood quinolinate (40%). During CNS-localized immune activation, > 98% of both L-kynurenine and quinolinate were derived via local synthesis in brain. Thus, immune activation and its site determine the sources from which L-kynurenine and quinolinate are synthesized in brain. Successful therapeutic modulation of their concentrations must take into account the metabolic and compartment sources.  相似文献   
7.
Human α‐amino‐β‐carboxymuconate‐ε‐semialdehyde decarboxylase determines the fate of tryptophan metabolites in the kynurenine pathway by controlling the quinolinate levels for de novo nicotinamide adenine dinucleotide biosynthesis. The unstable nature of its substrate has made gaining insight into its reaction mechanism difficult. Our electron paramagnetic resonance (EPR) spectroscopic study on the Cu‐substituted human enzyme suggests that the native substrate does not directly ligate to the metal ion. Substrate binding did not result in a change of either the hyperfine structure or the super‐hyperfine structure of the EPR spectrum. We also determined the crystal structure of the human enzyme in its native catalytically active state (at 1.99 Å resolution), a substrate analogue‐bound form (2.50 Å resolution), and a selected active site mutant form with one of the putative substrate binding residues altered (2.32 Å resolution). These structures illustrate that each asymmetric unit contains three pairs of dimers. Consistent with the EPR findings, the ligand‐bound complex structure shows that the substrate analogue does not directly coordinate to the metal ion but is bound to the active site by two arginine residues through noncovalent interactions. Proteins 2015; 83:178–187. © 2014 Wiley Periodicals, Inc.  相似文献   
8.
In the present study we demonstrate for the first time that both kynurenine aminotransferase (KAT) isoforms I and II are present in the permanent immature rat oligodendrocytes cell line (OLN-93). Moreover, we provide evidence that OLN-93 cells are able to synthesize kynurenic acid (KYNA) from exogenously added l-kynurenine and we characterize its regulation by extrinsic factors. KYNA production in OLN-93 cells was depressed in the presence of aminotransferase inhibitor, aminooxyacetic acid and was not affected by depolarizing agents such as 50 mM K+ and 4-aminopyridine. Glutamate agonists, l-glutamate and d,l-homocysteine significantly decreased KYNA production. Selective agonist of ionotropic glutamate receptors Amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid (AMPA) lowered KYNA production in OLN-93 cell line, whereas N-methyl-d-aspartate (NMDA) had no influence on KYNA production. Furthermore, KYNA synthesis in OLN-93 cells was decreased in a concentration-dependent manner by amino acids transported by l-system, l-leucine, l-cysteine and l-tryptophan. The role of KYNA synthesis in oligodendrocytes needs further investigation.  相似文献   
9.
10.
Tryptophan metabolites in the kynurenine pathway are up-regulated by pro-inflammatory cytokines or glucocorticoids, and are linked to anti-inflammatory and immunosuppressive activities. In addition, they are up-regulated in pathologies such as cancer, autoimmune diseases, and psychiatric disorders. The molecular mechanisms of how kynurenine pathway metabolites cause these effects are incompletely understood. On the other hand, pro-inflammatory cytokines also up-regulate the amounts of tetrahydrobiopterin (BH4), an enzyme cofactor essential for the synthesis of several neurotransmitter and nitric oxide species. Here we show that xanthurenic acid is a potent inhibitor of sepiapterin reductase (SPR), the final enzyme in de novo BH4 synthesis. The crystal structure of xanthurenic acid bound to the active site of SPR reveals why among all kynurenine pathway metabolites xanthurenic acid is the most potent SPR inhibitor. Our findings suggest that increased xanthurenic acid levels resulting from up-regulation of the kynurenine pathway could attenuate BH4 biosynthesis and BH4-dependent enzymatic reactions, linking two major metabolic pathways known to be highly up-regulated in inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号