首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
The thoracic diaphragm is a unique skeletal muscle composed of costal, crural, and central tendon domains. Although commonly described in medical textbooks, newer insights into the diaphragm cell composition are scarce. Here, using reporter mice, combined with gene expression analyses of whole tissues and primary cultures, we compared the diaphragm domains and their myogenic progenitors (i.e., Pax3/7 satellite cells). The outcomes of these analyses underscore the similarities between the myogenic aspects of the costal and crural domains. Expression levels of all myogenic genes examined (except Pax3) were strongly affected in mdx (dystrophin-null) mice and accompanied by an increase in fibrosis- and adiposity-related gene expression. Cell culture studies further indicated the presence of a non-myogenic Pax3-expressing population, potentially related to vascular mural cells. We additionally investigated the diaphragm vasculature. XLacZ4 and Sca1-GFP transgenes allowed a fine definition of the arterial and microvasculature network based on reporter expression in mural cells and capillary endothelium, respectively. We also provide insights into the organization of the diaphragm venous system, especially apparent in the central tendon and exhibiting arcades lined with fat-containing cells. The novel information in this "contemporary atlas" can be further explored in the context of diaphragm pathology and genetic disorders.  相似文献   
2.
3.
Glomerular endothelial cell injury plays an important role in the development and progression of diabetic nephropathy (DN). The expression and function of klotho in glomerular endothelial cells remain unclear. Thus, this study aimed to investigate the expression and the functional role of klotho in DN progression in mice and in high glucose (HG)-induced cell injury of human renal glomerular endothelial cells (HRGECs) and the underlying mechanism. In this study, HRGECs were cultured with media containing HG to induce endothelial cell injury and db/db mice were used as DN model mice. Klotho was overexpressed or knocked down in HRECs to evaluate its role in HG-induced HRGECs injury. klotho-overexpressing adenovirus (rAAV-klotho) was injected into db/db mice via the tail vein to further validate the protective effect of klotho in DN. Decreased klotho expression was observed in DN patients, DN mice, and HG-exposed HRGECs. Furthermore, klotho overexpression significantly abolished the HG-induced HRGECs injury and activation of Wnt/β-catenin pathway and RAAS. In contrast, klotho knockdown exerted the opposite effects. Moreover, klotho attenuated diabetic nephropathy in db/db mice, which was also associated with inhibition of the Wnt/β-catenin pathway and RAAS. In conclusion, klotho attenuates DN in db/db mice and ameliorates HG-induced injury of HRGECs.  相似文献   
4.
We recently reported that N-glycosylation changes during human aging. To further investigate the molecular basis determining these alterations, the aging process in mice was studied. N-glycan profiling of mouse serum glycoproteins in different age groups of healthy C57BL/6 mice showed substantial age-related changes in three major N-glycan structures: under-galactosylated biantennary (NGA2F), biantennary (NA2), and core α-1,6-fucosylated -β-galactosylated biantennary structures (NA2F). Mice defective in klotho gene expression (kl/kl), which have a shortened lifespan, displayed a similar but accelerated trend. Interestingly, the opposite trend was observed in slow-aging Snell Dwarf mice (dw/dw) and in mice fed a calorically restricted diet. We also discovered that increased expression and activity of α-1,6-fucosyltransferase (FUT8) in the liver are strongly linked to the age-related changes in glycosylation and that this increased FUT8 and fucosylation influence IGF-1 signaling. These data demonstrate that the glycosylation machinery in liver cells is significantly affected during aging and that age-related increased FUT8 activity could influence the aging process by altering the sensitivity of the IGF-1R signaling pathway.  相似文献   
5.
目的:研究福辛普利(fosinopril,Fos)对klotho基因表达的影响,探讨Fos对AngⅡ下调klotho基因表达的影响机制。方法:大鼠肾小管上皮细胞(NRK-52E)与干预药物共培养。按Fos时间梯度0(对照组),3,6,12,24h和浓度梯度0(对照组),10-9,10-8,10-7,10-6,10-5mol/L分组培养,用逆转录-多聚酶链反应(RT-PCR)检测klotho mRNA表达水平;设A.对照组,B.AngII(10-7mol/L)组,C.Fos(10-5mol/L)组,D.Fos(10-5mol/L)+AngII(10-7mol/L)组,E.Fos(10-5mol/L)干预12h后+AngII(10-7mol/L)共培养组,培养24h,用RT-PCR和免疫组化法检测klotho mRNA和蛋白表达。结果:①Fos对klotho mRNA表达呈时效依赖关系(P0.05),而量效关系不明显(P0.05);②AngII可抑制klotho mRNA和蛋白表达,给予Fos和AngII共同作用,或Fos预先干预后均能抑制AngII下调klotho mRNA表达,组间比较差异具有显著性意义(P均0.05)。结论:Fos对klotho mRNA表达存在时效依赖关系,Fos可能对klotho mRNA和蛋白表达起上调作用,并能抑制AngⅡ对klotho mRNA和蛋白的下调表达。  相似文献   
6.
A model animal showing spontaneous onset is a useful tool for investigating the mechanism of disease. Here, I would like to introduce two aging model animals expected to be useful for neuroscience research: the senescence-accelerated mouse (SAM) and the klotho mouse. The SAM was developed as a mouse showing a senescence-related phenotype such as a short lifespan or rapid advancement of senescence. In particular, SAMP8 and SAMP10 show age-related impairment of learning and memory. SAMP8 has spontaneous spongy degeneration in the brain stem and spinal cord with aging, and immunohistochemical studies reveal excess protein expression of amyloid precursor protein and amyloid β in the brain, indicating that SAMP8 is a model for Alzheimer’s disease. SAMP10 also shows age-related impairment of learning and memory, but it does not seem to correspond to Alzheimer’s disease because senile plaques primarily composed of amyloid β or neurofibrillary tangles primarily composed of phosphorylated tau were not observed. However, severe atrophy in the frontal cortex, entorhinal cortex, amygdala, and nucleus accumbens can be seen in this strain in an age-dependent manner, indicating that SAMP10 is a model for normal aging. The klotho mouse shows a phenotype, regulated by only one gene named α-klotho, similar to human progeria. The α-klotho gene is mainly expressed in the kidney and brain, and oxidative stress is involved in the deterioration of cognitive function of the klotho mouse. These animal models are potentially useful for neuroscience research now and in the near future.  相似文献   
7.
8.
9.
Human cytosolic beta-glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides, with specificity depending on the aglycone moiety, the type of sugar and the linkage between them. In this study, the substrate preference of this enzyme was investigated by mutational analysis, X-ray crystallography and homology modelling. The crystal structure of hCBG was solved by the molecular replacement method and refined at 2.7 A resolution. The main-chain fold of the enzyme belongs to the (beta/alpha)(8) barrel structure, which is common to family 1 glycoside hydrolases. The active site is located at the bottom of a pocket (about 16 A deep) formed by large surface loops, surrounding the C termini of the barrel of beta-strands. As for all the clan of GH-A enzymes, the two catalytic glutamate residues are located on strand 4 (the acid/base Glu165) and on strand 7 (the nucleophile Glu373). Although many features of hCBG were shown to be very similar to previously described enzymes from this family, crucial differences were observed in the surface loops surrounding the aglycone binding site, and these are likely to strongly influence the substrate specificity. The positioning of a substrate molecule (quercetin-4'-glucoside) by homology modelling revealed that hydrophobic interactions dominate the binding of the aglycone moiety. In particular, Val168, Trp345, Phe225, Phe179, Phe334 and Phe433 were identified as likely to be important in determining substrate specificity in hCBG, and site-directed mutagenesis supported a key role for some of these residues.  相似文献   
10.
Previous studies have illustrated that bone marrow-derived mesenchymal stem cell (BMMSC) transplantation has therapeutic effects on diabetes and can prevent mice from renal damage and diabetic nephropathy (DN). Moreover, adipose-derived MSCs possess similar characteristics to BMMSCs. We investigated the effect of ADMSC transplantation on streptozotocin (STZ)-induced renal injury. Diabetes was induced in rats by STZ injection. After ADMSC treatment, renal histological changes and cell apoptosis were evaluated as were the expression of apoptosis-related proteins, Wnt/β-catenin pathway members, and klotho levels. We found that ADMSCs improved renal histological changes. Next, NRK-52E cells were exposed to normal glucose (NG; 5.5 mM glucose plus 24.5 mM mannitol)/high glucose (HG) or ADMSCs, and then measured for changes in the aforementioned proteins. Similarly, changes in these proteins were also determined following transient transfection of klotho siRNA. We found that both ADMSC transplantation and co-incubation reduced the rate of cellular apoptosis, decreased Bax and Wnt/β-catenin levels, and elevated Bcl-2 and klotho levels. Interestingly, klotho knockdown reversed the effects of ADMSCs on the expression of apoptosis-related proteins and Wnt/β-catenin pathway members. Taken together, ADMSCs transplantation might attenuate renal injury in DN via activating klotho and inhibiting the Wnt/β-catenin pathway. This study may provide evidence for the treatment of DN using ADMSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号