首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2011年   1篇
  2008年   1篇
  2003年   1篇
  2002年   1篇
  1999年   3篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The nutritional versatility of dinoflagellates is a complicating factor in identifying potential links between nutrient enrichment and the proliferation of harmful algal blooms. For example, although dinoflagellates associated with harmful algal blooms (e.g. red tides) are generally considered to be phototrophic and use inorganic nutrients such as nitrate or phosphate, many of these species also have pronounced heterotrophic capabilities either as osmotrophs or phagotrophs. Recently, the widespread occurrence of the heterotrophic toxic dinoflagellate, Pfiesteria piscicida Steidinger et Burkholder, has been documented in turbid estuarine waters. Pfiesteria piscicida has a relatively proficient grazing ability, but also has an ability to function as a phototroph by acquiring chloroplasts from algal prey, a process termed kleptoplastidy. We tested the ability of kleptoplastidic P. piscicida to take up 15N-labeled NH     , NO     , urea, or glutamate. The photosynthetic activity of these cultures was verified, in part, by use of the fluorochrome, primulin, which indicated a positive relationship between photosynthetic starch production and growth irradiance. All four N substrates were taken up by P. piscicida , and the highest uptake rates were in the range cited for phytoplankton and were similar to N uptake estimates for phagotrophic P. piscicida . The demonstration of direct nutrient acquisition by kleptoplastidic P. piscicida suggests that the response of the dinoflagellate to nutrient enrichment is complex, and that the specific pathway of nutrient stimulation (e.g. indirect stimulation through enhancement of phytoplankton prey abundance vs. direct stimulation by saprotrophic nutrient uptake) may depend on P. piscicida 's nutritional state (phagotrophy vs. phototrophy).  相似文献   
2.
In studying how environmental factors control the population dynamics of Pfiesteria piscicida Steidinger et Burkholder, we examined the influence of light regime on kleptoplastidic photosynthesis, growth, and grazing. Prey (Rhodomonas sp.)‐saturated growth rate of P. piscicida increased (0.67 ± 0.03 d?1 to 0.91 ± 0.11 d?1) with light intensity varying from 0 to 200 μmol photons·m?2·s?1. No significant effect was observed on grazing, excluding the possibility that light enhanced P. piscicida growth through stimulating grazing. Light‐grown P. piscicida exhibited a higher gross growth efficiency (0.78 ± 0.10) than P. piscicida incubated in the dark (0.32 ± 0.16), and photosynthetic inhibitors significantly decreased growth of recently fed populations. These results demonstrate a role of kleptoplastidic photosynthesis in enhancing growth in P. piscicida. However, when the prey alga R. sp. was depleted, light's stimulating effect on P. piscicida growth diminished quickly, coinciding with rapid disappearance of Rhodomonas‐derived pigments and RUBISCO from P. piscicida cells. Furthermore, the effect of light on growth was reversed after extended starvation, and starved light‐grown P. piscicida declined at a rate significantly greater than dark‐incubated cultures. The observed difference in rates of decline appeared to be attributable to light‐dependent cannibalism. Using a 5‐chloromethylfluorescein diacetate staining technique, cannibalistic grazing was observed after 7 days of starvation, at a rate four times greater under illumination than in the dark. The results from this study suggest that kleptoplastidy enhances growth of P. piscicida only in the presence of algal prey. When prey is absent, P. piscicida populations may become vulnerable to light‐stimulated cannibalism.  相似文献   
3.
Cryptophyte vestiges showing selective digestion of nuclei were found in the gonyaulacalean dinoflagellates Amylax buxus (Balech) Dodge and Amylax triacantha (Jörgensen) Sournia. They emitted bright yellow‐orange fluorescence (590‐nm emission) under epifluorescent microscopy and possessed U‐shaped plastids, suggesting the vestiges were active in photosynthesis. Under transmission electron microscopy, the plastid was characterized by a loose arrangement of two to three thylakoid stacks and included a stalked pyrenoid, as in the cryptophyte genus Teleaulax. Indeed, molecular data based on the plastid small‐subunit rRNA gene demonstrated that the vestiges in Amylax originated from Teleaulax amphioxeia. The stolen plastid (kleptoplastids) in Dinophysis is also derived from this cryptophyte species. However, in sharp contrast to Dinophysis, the plastid of the vestige in Amylax was surrounded by a double layer of plastid endoplasmic reticulum, and within the periplastidal area, a nucleomorph was retained. The vestiges also possessed mitochondria with characteristic plate‐like cristae, but lost the cell‐surface structure. The phagocytotic membrane of the dinoflagellates seemed to surround the cryptophytes right after the incorporation, but the membrane itself would probably be digested eventually. Remarkably, only one cryptophyte cell among 14 vestiges in a cell of A. buxus had a nucleus. This is the first recording of possible kleptoplastidy in gonyaulacalean dinoflagellates, and documents the strategy of a dinoflagellate involving the selective elimination of the cryptophyte nucleus.  相似文献   
4.
In marine ecosystems, acquired phototrophs – organisms that obtain their photosynthetic ability by hosting endosymbionts or stealing plastids from their prey – are omnipresent. Such taxa function as intraguild predators yet depend on their prey to periodically obtain chloroplasts. We present a new theory for the effects of acquired phototrophy on community dynamics by analysing a mathematical model of this predator–prey interaction and experimentally verifying its predictions with a laboratory model system. We show that acquired phototrophy stabilises coexistence, but that the nature of this coexistence exhibits a ‘paradox of enrichment’: as light increases, the coexistence between the acquired phototroph and its prey transitions from a stable equilibrium to boom‐bust cycles whose amplitude increases with light availability. In contrast, heterotrophs and mixotrophic acquired phototrophs (that obtain  < 30% of their carbon from photosynthesis) do not exhibit such cycles. This prediction matches field observations, in which only strict ( > 95% of carbon from photosynthesis) acquired phototrophs form blooms.  相似文献   
5.
The ichthyotoxic dinoflagellate Pfiesteria piscicida Steidinger et Burkholder has a complex life cycle with several heterotrophic flagellated and amoeboid stages. A prevalent flagellated form, the nontoxic zoospore stage, has a proficient grazing ability, especially on cryptophyte prey. Although P. piscicida zoospores lack the genetic capability to synthesize chloroplasts, they can obtain functional chloroplasts from algal prey (i.e. kleptoplastidy), as demonstrated here with a cryptophyte prey. Zoospores grown with Rhodomonas sp. Karsten CCMP757 (Cryptophyceae) grazed the cryptophyte population to minimal densities. After placing the cultures in near darkness where cryptophyte recovery was restricted and further prey ingestion did not occur, the time-course patterns in growth, prey chloroplast content·zoospore−1, and prey nucleus content·zoospore−1 were followed. Ingested chloroplasts were selectively retained in the dinoflagellate, as indicated by the decline and, ultimately, near absence of cryptophyte nuclei in plastid-containing zoospores. Chloroplasts retained inside P. piscicida cells for at least a week were photosynthetically active, as indicated by starch accumulation and microscope-autoradiographic measurements of bicarbonate uptake. Recognition that P. piscicida can function as a phototroph broadens our perspective of the physiological ecology of the dinoflagellate because it suggests that, at least during part of its life cycle, P. piscicida 's growth and survival might be affected by photoregulation and nutritional control of photosynthesis.  相似文献   
6.
Many ciliates acquire the capacity for photosynthesis through stealing plastids or harboring intact endosymbiotic algae. Both phenomena are a form of mixotrophy and are widespread among ciliates. Mixotrophic ciliates may be abundant in freshwater and marine ecosystems, sometimes making substantial contributions toward community primary productivity. While mixotrophic ciliates utilize phagotrophy to capture algal cells, their endomembrane system has evolved to partially bypass typical heterotrophic digestion pathways, enabling metabolic interaction with foreign cells or organelles. Unique adaptations may also be found in certain algal endosymbionts, facilitating establishment of symbiosis and nutritional interactions, while reducing their fitness for survival as free-living cells. Plastid retaining oligotrich ciliates possess little selectivity from which algae they sequester plastids, resulting in unstable kleptoplastids that require frequent ingestion of algal cells to replace them. Mesodinium rubrum (=Myrionecta rubra) possesses cryptophyte organelles that resemble a reduced endosymbont, and is the only ciliate capable of functional phototrophy and plastid division. Certain strains of M. rubrum may have a stable association with their cryptophyte organelles, while others need to acquire a cryptophyte nucleus through feeding. This process of stealing a nucleus, termed karyoklepty, was first described in M. rubrum and may be an evolutionary precursor to a stable, reduced endosymbiont, and perhaps eventually a tertiary plastid. The newly described Mesodinium"chamaeleon," however, is less selective of which cryptophyte species it will retain organelles, and appears less capable of sustained phototrophy. Ciliates likely stem from a phototrophic ancestry, which may explain their propensity to practice acquired phototrophy.  相似文献   
7.
There is increasing awareness that many terrestrial and aquatic organisms are not strictly heterotrophic or autotrophic but rather mixotrophic. Mixotrophy is an intermediate nutritional strategy, merging autotrophy and heterotrophy to acquire organic carbon and/or other elements, mainly N, P or Fe. We show that both terrestrial and aquatic mixotrophs fall into three categories, namely necrotrophic (where autotrophs prey on other organisms), biotrophic (where heterotrophs gain autotrophy by symbiosis) and absorbotrophic (where autotrophs take up environmental organic molecules). Here we discuss their physiological and ecological relevance since mixotrophy is found in virtually every ecosystem and occurs across the whole eukaryotic phylogeny, suggesting an evolutionary pressure towards mixotrophy. Ecosystem dynamics tend to separate light from non‐carbon nutrients (N and P resources): the biological pump and water stratification in aquatic ecosystems deplete non‐carbon nutrients from the photic zone, while terrestrial plant successions create a canopy layer with light but devoid of non‐carbon soil nutrients. In both aquatic and terrestrial environments organisms face a grand écart (dancer's splits, i.e., the need to reconcile two opposing needs) between optimal conditions for photosynthesis vs. gain of non‐carbon elements. We suggest that mixotrophy allows adaptation of organisms to such ubiquist environmental gradients, ultimately explaining why mixotrophic strategies are widespread.  相似文献   
8.
Photosynthetic members of the genus Dinophysis Ehrenberg contain a plastid of uncertain origin. Ultrastructure and pigment analyses suggest that the two‐membrane‐bound plastid of Dinophysis spp. has been acquired through endosymbiosis from a cryptophyte. However, these organisms do not survive in culture, raising the possibility that Dinophysis spp. have a transient kleptoplast. To test the origin and permanence of the plastid of Dinophysis, we sequenced plastid‐encoded psbA and small subunit rDNA from single‐cell isolates of D. acuminata Claparède et Lachman, D. acuta Ehrenberg, and D. norvegica Claparède et Lachman. Phylogenetic analyses confirm the cryptophyte origin of the plastid. Plastid sequences from different populations isolated at different times are monophyletic with robust support and show limited polymorphism. DNA sequencing also revealed plastid sequences of florideophyte origin, indicating that Dinophysis may be feeding on red algae.  相似文献   
9.
Mixotrophy, used herein for the combination of phototrophy and phagotrophy, is widespread among dinoflagellates. It occurs among most, perhaps all, of the extant orders, including the Prorocentrales, Dinophysiales. Gymnodiniales, Noctilucales, Gonyaulacales, Peridiniales, Blastodiniales. Phytodiniales, and Dinamoebales. Many cases of mixotrophy among dinoflagellates are probably undocumented. Primarily photosynthetic dinoflagellates with their “own” plastids can often supplement their nutrition by preying on other cells. Some primarily phagotrophic species are photosynthetic due to the presence of kleptochloroplasts or algal endosymbionts. Some parasitic dinoflagellates have plastids and are probably mixotrophic. For most mixotrophic dinoflagellates, the relative importance of photosynthesis, uptake of dissolved inorganic nutrients, and feeding are unknown. However, it is apparent that mixotrophy has different functions in different physiological types of dinoflagellates. Data on the simultaneous regulation of photosynthesis, assimilation of dissolved inorganic and organic nutrients, and phagotophy by environmental parameters (irradiance. availablity of dissolved nutrients, availability of prey) and by life history events are needed in order to understand the diverse roles of mixotrophy in dinoflagellates.  相似文献   
10.
The ciliate genus Mesodinium contains species that rely to varying degrees on photosynthetic machinery stolen from cryptophyte algal prey. Prey specificity appears to scales inversely with this reliance: The predominantly phototrophic M. major/rubrum species complex exhibits high prey specificity, while the heterotrophic lineages M. pulex and pupula are generalists. Here, we test the hypothesis that the recently described mixotroph M. chamaeleon, which is phylogenetically intermediate between M. major/rubrum and M. pulex/pupula, exhibits intermediate prey preferences. Using a series of feeding and starvation experiments, we demonstrate that M. chamaeleon grazes and retains plastids at rates which often exceed those observed in M. rubrum, and retains plastids from at least five genera of cryptophyte algae. Despite this relative generality, M. chamaeleon exhibits distinct prey preferences, with higher plastid retention, mixotrophic growth rates and efficiencies, and starvation tolerance when offered Storeatula major, a cryptophyte that M. rubrum does not appear to ingest. These results suggest that niche partitioning between the two acquired phototrophs may be mediated by prey identity. M. chamaeleon appears to represent an intermediate step in the transition to strict reliance on acquired phototrophy, indicating that prey specificity may evolve alongside degree of phototrophy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号