首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1584篇
  免费   227篇
  国内免费   74篇
  2024年   4篇
  2023年   30篇
  2022年   29篇
  2021年   45篇
  2020年   74篇
  2019年   67篇
  2018年   70篇
  2017年   72篇
  2016年   82篇
  2015年   89篇
  2014年   93篇
  2013年   108篇
  2012年   86篇
  2011年   85篇
  2010年   52篇
  2009年   84篇
  2008年   57篇
  2007年   78篇
  2006年   83篇
  2005年   63篇
  2004年   42篇
  2003年   45篇
  2002年   40篇
  2001年   37篇
  2000年   34篇
  1999年   20篇
  1998年   27篇
  1997年   24篇
  1996年   32篇
  1995年   27篇
  1994年   25篇
  1993年   31篇
  1992年   22篇
  1991年   14篇
  1990年   15篇
  1989年   13篇
  1988年   14篇
  1987年   7篇
  1986年   9篇
  1985年   8篇
  1984年   12篇
  1983年   6篇
  1982年   4篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
排序方式: 共有1885条查询结果,搜索用时 15 毫秒
1.
2.
3.
Random amplified polymorphic DNA (RAPD) markers are used to estimate interspecific variation among mangrove and non-mangrove Heritiera fomes, H. littoralis and H. macrophylla. All the species have 2n = 38 chromosomes, with minute structural changes distinguishing the karyotype of each species. Significant variation of 4C DNA content occurs at the interspecific level. Interspecific polymorphism ranged from 14.09% between H. fomes and H. littoralis to 52.73% between H. fomes and H. macrophylla. H. macrophylla showed wide polymorphism in the RAPD marker with H. littoralis (51.23%) and H. fomes (52.73%). Two distinct RAPD products obtained from OPA-10 (1000 bp) and OPD-15 (900 bp) found characteristic molecular markers in H. macrophylla , a species from a non-mangrove habitat. H. macrophylla was more distantly related to H. fomes [genetic distance (1-F) = 0.305] than to H. littoralis [genetic distance (1-F) = 0.273]. H. littoralis was of a closer affinity to H. fomes [genetic distance (1-F) = 0.218] than to H. macrophylla.  相似文献   
4.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   
5.
6.
7.
8.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   
9.
Abstract:  The characteristics and regeneration-restore of protoplasts and its karyotype of an insect pathological fungus, Metarhizium anisopliae var. majus were studied. Among the protoplasts, 25.3% were without a nucleus, and 74.7% contained a nucleus. Among the nucleus protoplasts, 53.6% contained a single nucleus. The regeneration-restore of protoplasts was of three distinct shapes. Considering the frequency of regeneration and the growing speed of the colony, 0.7 mol/l glucose was the optimum as osmotic stabilizer of culture medium in the regeneration-restore of the protoplasts. The chromosomal DNA molecules of M. anisopliae var. majus have been separated into seven bands by pulsed-field gel electrophoreses. Using the Schizosaccharomyces pombe chromosomes as size standard, the size of chromosomal DNA was estimated to be 1.1–6.5 Mb and its karyotype exhibited polytypism among strains.  相似文献   
10.
A comparison of karyotypes ofBrachyscome breviscapis (2n = 8),B. lineariloba cytodemes E (2n = 10), B (2n = 12) and C (2n = 16) suggests that these species have a homoelogous basic set of four chromosome pairs, two large pairs and two small, and that theB. lineariloba cytodemes E, B and C are related toB. breviscapis by successive additions of small chromosomes. A pronounced asynchrony of chromosome condensation between these large and small chromosomes has been observed. In the artificial hybrids betweenB. dichromosomatica (2n = 4) ×B. breviscapis, and theB. lineariloba cytodemes, theB. dichromosomatica chromosomes are similar in size and condensation behaviour to the small chromosomes ofB. breviscapis and ofB. lineariloba cytodemes E, B and C. Meiotic pairing in these hybrids also demonstrates the strong affinities between these chromosomes. It is suggested thatB. breviscapis may be of amphidiploid origin between a species with two large early condensing chromosome pairs and another,B. dichromosomatica-like species with two small late condensing pairs. It seems most likely that the additional small and late condensing chromosomes inB. lineariloba cytodemes E, B and C are derived from theB. dichromosomatica-like parent, and that each addition increases vigour, fecundity and drought tolerance, allowing these cytodemes to colonize more open and arid environments. Transmission of the univalents in the quasidiploidB. lineariloba cytodeme E was verified as being via the pollen, and not via the embryo sacs.The cytology ofBrachyscome lineariloba (Compositae, Asteroidae), 10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号