首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  国内免费   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
Summary This study has monitored junctional and nonjunctional resistance. [Ca2+] i and [H] i , and the effects of various drugs in crayfish septate axons exposed to neutral anesthetics. The uncoupling efficiency of heptanol and halothane is significantly potentiated by caffeine and theophylline. The modest uncoupling effects of isoflurane, described here for the first time, are also enhanced by caffeine. Heptanol causes a decrease in [Ca2+] i and [H+] i both in the presence and absence of either caffeine or theophylline. A similar but transient effect on [Ca2+] i is observed with halothane. 4-Aminopyridine strongly inhibits the uncoupling effects of heptanol. The observed decrease in [Ca2–] i with heptanol and halothane and negative results obtained with different [Ca2+] o , Ca2+-channel blockers (nisoldipine and Cd2+) and ryanodine speak against a Ca2+ participation. Negative results obtained with 3-isobutyl-l-methylxanthine, forskolin, CPT-cAMP, 8Br-cGMP, adenosine, phorbol ester and H7, superfused in the presence and absence of caffeine and/or heptanol. indicate that neither the heptanol effects nor their potentiation by caffeine are mediated by cyclic nucleotides, adenosine receptors and kinase C. The data suggest a direct effect of anesthetics. possibly involving both polar and hydrophobic interactions with channel proteins. Xanthines and 4-aminopyridine may participate by influencing polar interactions. The potentiating effect of xanthines on cell-to-cell uncoupling by anesthetics may provide some clues on the nature of cardiac arrhythmias in patients treated with theophylline during halothane anesthesia.  相似文献   
2.
3.
目的:探究不同浓度七氟烷联合丙泊酚对小儿麻醉后肌钙蛋白I、C反应蛋白以及补体水平影响。方法:收集我院60例ASAⅠ级拟行全麻手术患儿,随机分为A、B、C三组,每组20例。A组给予2%浓度的七氟烷联合丙泊酚麻醉;B组2.5%浓度的七氟烷联合丙泊酚麻醉;C组3%浓度的七氟烷联合丙泊酚麻醉。检测三组患儿苏醒时间、术后情况,肌钙蛋白I(cTnI)、C反应蛋白(CRP)及补体C_3、C_4水平。结果:A组、B组自主呼吸时间、气管导管拔管时间、解除监护时间较C组相比时间明显较短(P0.05);但A组与B组比较无统计学差异(P0.05);与A组比,B组与C组术后肌钙蛋白I、CRP水平较低,C_3、C_4水平较高(P0.05),但B组与C组血清指标比较无统计学差异(P0.05)。结论:2.5%浓度的七氟烷联合丙泊酚是诱导小儿全身麻醉中的最佳浓度。  相似文献   
4.
Despite some anatomical and physiological differences, mouse models continue to be an essential tool for studying human lung disease. Bleomycin toxicity is a commonly used model to study both acute lung injury and fibrosis, and multiple methods have been developed for administering bleomycin (and other toxic agents) into the lungs. However, many of these approaches, such as transtracheal instillation, have inherent drawbacks, including the need for strong anesthetics and survival surgery. This paper reports a quick, reproducible method of intratracheal intubation that involves mild inhaled anesthesia, visualization of the trachea, and the use of a surrogate spirometer to confirm exposure. As a proof of concept, 8-12 week old C57BL/6 mice were administered either 2.0 U/kg of bleomycin or an equivalent volume of PBS, and both damage and fibrotic endpoints were measured post-exposure. This procedure allows researchers to treat a large cohort of mice in a relatively short period with little expense and minimal post-procedure care.  相似文献   
5.
Epidemiological studies showed that isoflurane, a general anesthetic widely used in surgery including those for the children, is associated with impairment of neurodevelopment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and age-related macular degeneration (AMD), which are related to the accumulation of reactive oxygen species (ROS). Astragaloside (AS) is an antioxidant derivative from a traditional Chinese herbal medicine Astragalus membraneaceus Bunge. In this study, we used retinal pigment epithelial cells, which share plenty of features with neurodegenerative diseases such as AD and AMD to investigate the effect of AS. Cell cycle re-entry and proapoptosis were seen in retinal pigment epithelium (RPE) cells treated with isoflurane, which was alleviated by pretreatment of AS. Further, tumor necrosis factor receptor-associated factor 5 (TRAF5) and downstream nuclear factor-κB (NF-κB) were investigated to elucidate the molecular mechanism underlying protective effect of AS. RPE cells exposed to isoflurane expressed higher TRAF5 and NF-κB than those pretreated with AS, suggesting a critical role of TRAF5 therein. In Morris water maze (MWM) assay, Sprague-Dawley rats pretreated with AS and then exposed to isoflurane spent less time in swimming to the platform, and their TRAF5 expression was significantly lower than those received anesthesia alone. Further studies on the consequence of forced downregulation or upregulation are warranted that may employ cutting-edge technologies such as optogenetics to overcome the difficulties in manipulating expression of TRAF5. Although the link between TRAF5 and neurodegeneration requires more in-depth investigations, our study provide a novel hint on the pathological mechanism of isoflurane and suggest a potential target for eliminating persistent side effect of anesthesia.  相似文献   
6.
General anesthetics achieve behavioral unresponsiveness via a mechanism that is incompletely understood. The study of genetic model systems such as the fruit fly Drosophila melanogaster is crucial to advancing our understanding of how anesthetic drugs render animals unresponsive. Previous studies have shown that wild-type control strains differ significantly in their sensitivity to general anesthetics, which potentially introduces confounding factors for comparing genetic mutations placed on these wild-type backgrounds. Here, we examined a variety of behavioral and electrophysiological endpoints in Drosophila, in both adult and larval animals. We characterized these endpoints in 3 commonly used fly strains: wild-type Canton Special (CS), and 2 commonly used white-eyed strains, isoCJ1 and w1118. We found that CS and isoCJ1 show remarkably similar sensitivity to isoflurane across a variety of behavioral and electrophysiological endpoints. In contrast, w1118 is resistant to isoflurane compared to the other 2 strains at both the adult and larval stages. This resistance is however not reflected at the level of neurotransmitter release at the larval neuromuscular junction (NMJ). This suggests that the w1118 strain harbors another mutation that produces isoflurane resistance, by acting on an arousal pathway that is most likely preserved between larval and adult brains. This mutation probably also affects sleep, as marked differences between isoCJ1 and w1118 have also recently been found for behavioral responsiveness and sleep intensity measures.  相似文献   
7.
8.
The volatile halogenated methyl ethyl ether, isoflurane, used as an anaesthetic, inhibits actin-based dynamics directly or indirectly in animal cells. In plant cells, most intracellular movements are related to actin pathways. We have used isoflurane in a unicellular alga, Acetabularia acetabulum, to test the dynamics of choloroplast organization. By measuring the delayed luminescence, we found that isoflurane worked efficiently in the unicellular organism and showed dose- and time-course-dependent actin-inhibition patterns. When A. acetabulum was treated with saturated solutions of isoflurane in artificial seawater (defined as 100% isoflurane) for 3 or 6 min, the delayed luminescence (DL) was decreased and was never recovered. In contrast, if treated with 75% diluted isoflurane, the DL was firstly inhibited and then recovered several hours later, and if treated with 50% diluted isoflurane, the change of DL was small. Our work proved that isoflurane can affect actin-related pathways in both animals and plants.  相似文献   
9.
10.
Although it is known that isoflurane exposure or surgery leads to post‐operative cognitive dysfunction in aged rodents, there are few clinical interventions and treatments available to prevent this disorder. Minocycline (MINO) produces neuroprotection from several neurodegenerative diseases and various experimental animal models. Therefore, we set out to investigate the effects of MINO pre‐treatment on isoflurane or surgery induced cognitive impairment in aged mice by assessing the hippocampal‐dependent spatial memory performance using the Morris water maze task. Hippocampal tissues were isolated from mice and evaluated by Western blot analysis, immunofluorescence procedures and protein array system. Our results elucidate that MINO down‐regulated the isoflurane‐induced and surgery‐induced enhancement in the protein levels of pro‐inflammatory cytokine tumour necrosis factor alpha, interleukin (IL)‐1β, interferon‐γ and microglia marker Iba‐1, and up‐regulated protein levels of the anti‐inflammatory cytokine IL‐4 and IL‐10. These findings suggest that pre‐treatment with MINO attenuated isoflurane or surgery induced cognitive impairment by inhibiting the overactivation of microglia in aged mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号