首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   549篇
  免费   48篇
  国内免费   10篇
  2023年   9篇
  2022年   11篇
  2021年   32篇
  2020年   13篇
  2019年   31篇
  2018年   21篇
  2017年   21篇
  2016年   22篇
  2015年   31篇
  2014年   65篇
  2013年   69篇
  2012年   24篇
  2011年   19篇
  2010年   24篇
  2009年   29篇
  2008年   24篇
  2007年   20篇
  2006年   21篇
  2005年   12篇
  2004年   17篇
  2003年   14篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   7篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有607条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(5):1342-1357.e4
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   
2.
Isolate M of Potato virus A (PVA‐M; genus Potyvirus) is avirulent in Nicandra physaloides L. (family Solanaceae). The inoculated leaves are infected but no systemic infection is observed. Forty plants of ‘Black Pod’ (BP) and ‘Black Pod Alba’ (BPA), two variants of N. physaloides described in this study, were inoculated with PVA‐M. Two plants of BP and one plant of BPA were systemically infected. Mosaic, blistering and dark green islands developed on the systemically infected leaves, and flowers showed colour‐break symptoms. PVAprogeny were sequence‐characterised for the 6K2 protein and viral genome‐linked protein (VPg) encoding regions known to control the long distance movement of PVA in N. physaloides. All virus progeny (designated as PVA‐Mm) in the systemically infected leaves of the plants inoculated with PVA‐M contained only a single amino acid substitution (Vail 16Met) in the central part of VPg due to a nucleotide substitution G6033A, as compared to PVA‐M. Other PVA isolates that infected N. physaloides systemically also contained Metll6 in VPg. In a previous study using chimeric viruses, Metl16 in VPg was shown to be a major determinant for vascular movement of PVA in N. physaloides, and this study reveals that the mutation for Metl16 can occur in vivo during replication of the avirulent PVA‐M in infected plants. Immunolocalisation studies on BP and BPA plants showed that the pods (berries) and seed coat contained PVA‐Mm in the developing seeds, but no virus was detected in embryons. Up to 27% of the mature seeds contained PVA‐Mm but no transmission to seedlings was observed in a total of 450 seeds tested, and no test plants were infected following mechanical inoculation with extracts prepared from the seeds.  相似文献   
3.
Two isoprene (2-methyl-1,3-butadiene) utilizing bacteria, Alcaligenes denitrificans ssp. xylosoxidans JE 75 and Rhodococcus erythropolis JE 77, were identified as highly efficient cooxidizers of TCE, cis- and transdichloroethene, 1,1-dichloroethene and vinylchloride. Isoprene grown cells eliminate chloride from TCE in stoichiometric amounts and tolerate high concentrations of TCE.  相似文献   
4.
Summary By cotransfecting plasmids carrying particular mutations in the -glucuronidase (GUS) gene into Nicotiana plumbaginifolia protoplasts and by monitoring the recombination rates using a recently developed transient assay, we were able to obtain insights into the mechanism of extrachromosomal recombination operating in plant cells. An exchange of flanking markers takes place in over 90% of the recombination events. In most of the remaining cases two consecutive, independent single crossover events occur. These events involve the same DNA substrate and lead to two successive exchanges of flanking markers, thus mimicking a presumed double crossover intermediate. A comparison of the outcome of our experiments with the predictions of two recombination models originally proposed for mammalian cells indicates that extrachromosomal recombination in plant cells is best described by the single strand annealing model. According to this model all recombination events result in an exchange of flanking markers. Our results rule out the double strand break repair model which predicts that flanking markers are exchanged in only half of all events.  相似文献   
5.
W Ferro 《Mutation research》1985,149(3):399-408
We investigated larval sensitivity to UV and repair of UV- and X-ray-induced lesions in the DNA of the ebony strain compared to a wild-type strain (Canton S). The ebony strain was previously characterized as being more sensitive to UV-induced killing of embryos than Canton S. Also the ebony strain is more sensitive to X-rays for induction of larval killing, dominant lethals and recessive lethals. In this paper it is demonstrated that (1) ebony larvae are more sensitive to killing by UV and less proficient in photoreactivation (PR) ability than Canton S larvae; (2) the ebony strain has a defect in PR repair of endonuclease-sensitive sites induced in the DNA of primary cell cultures by UV irradiation; (3) the ebony strain has a defect in the repair of single-strand breaks induced in the DNA by X-rays (again in primary cell cultures), at least early on in the repair incubation. A rough localization of the UV sensitivity and the PR ability is presented and the possible relevance of the biochemical to the genetic results is discussed.  相似文献   
6.
A simulation analysis of the kinetics of micronucleus formation in polychromatic erythrocytes in mouse bone marrow was performed after a single administration of 3 chemicals--mitomycin C (MMC), 6-mercaptopurine (6-MP) and 1-beta-D-arabinofuranosylcytosine (Ara-C)--with different modes of action. The time-response patterns in the incidence of chromosomal aberrations and micronuclei after treatment with each chemical were compared and subjected to the simulation study with 3 parameters. Two of them, the time between the final mitotic metaphase of the erythroid series and nucleus expulsion (T1), and the duration of the polychromatic erythrocyte (PCE) stage in the bone marrow (T2), were almost identical for the 3 chemicals. However, the coefficients of formation rate of micronucleated cells resulting from cells with chromosomal aberration(s) (k) differed: Ara-C differed from the other two. These results indicate that chromosomal aberrations, especially chromatid breaks and probably gaps, induced by this chemical, effectively contribute to micronucleus formation. The DNA content of micronuclei was also compared to the length of acentric fragments induced by Ara-C and it was found that their distributions were comparable. These findings strongly suggest that chromosomal aberrations induced by chemicals are essential events for the induction of micronuclei in the PCE of bone marrow.  相似文献   
7.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   
8.
9.
To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37°C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage.  相似文献   
10.
噻替派浓度为0.1%、0.3%、0.5%时,黑胸大蠊精母细胞染色体断裂和裂隙率分别为6.3%、 10.5%和14.2%,显著地高于对卵母细胞的影响;和雄虫外周血淋巴细胞微核率呈平行关系,随微核率增多而增加。5-氟尿嘧啶浓度为0.1%、0.3%和0.5%时,卵母细胞染色体断裂和裂隙率分别为3.5%、9.8%和16.2%,和雌虫外周血淋巴细胞微核率呈平行关系,随微核率增多而增加,而对雄虫生殖细胞影响不显著。 Abstract:0.1%,0.3%,0.5% Thio-TEPA induced 6.3%,10.5% and 14.2% chromosome break or gap in spermatocyte of cockroach respectively.This was markedly higher than those in oocyte.In doses from 0.1 to 0.5 Tho-TEPA the frequency of micronucleus increased parallely with nuclear damage.0.1%,0.3%,0.5% 5-fluorouracil induced 3.5%,9.8%,16.2% chromosome break or gap in oocytes respectively.This was paralled with the frequency of micronucleus in lymphocytes of the female.5-fluorouracil showed not marked effect on spermatocyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号