首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   65篇
  国内免费   8篇
  2024年   2篇
  2023年   18篇
  2022年   19篇
  2021年   21篇
  2020年   29篇
  2019年   39篇
  2018年   18篇
  2017年   22篇
  2016年   10篇
  2015年   15篇
  2014年   30篇
  2013年   34篇
  2012年   20篇
  2011年   12篇
  2010年   17篇
  2009年   16篇
  2008年   19篇
  2007年   16篇
  2006年   14篇
  2005年   11篇
  2004年   11篇
  2003年   17篇
  2002年   5篇
  2001年   10篇
  2000年   11篇
  1999年   4篇
  1998年   14篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
1.
During the reductive process in the tissues, the aerobes generate a number of oxidants. Unless these oxidants are reduced, oxidative damage and cell death would occur. Oxidation of plasma membrane lipids leads to autocatalytic chain reactions which eventually alter the permeability of the cell. The role of oxidative damage in the pathophysiology of diabetic complications and ischemic reperfusion injury of myocardium, especially the changes in the channel activity which may lead to arrhythmia have been studied. Hyperglycemia activates aldose reductase which could efficiently reduce glucose to sorbitol in the presence of NADPH. Since NADPH is also aldose required by glutathione reductase for reducing oxidants, its diversion would lead to membrane lipid oxidation and permeability changes which are probably responsible for diabetic complications such as cataractogenesis, retinopathy, neuropathy etc. Antioxidants such as butylated hydroxy toluene (BHT) and also reductase inhibitors prevent or delay some of these complications. By using patch-clamp technique in isolated frog myocytes, we have shown that hydroxy radicals generated by ferrous sulfate and ascorbate as well as lipid peroxides such as t-butyl hydroperoxide facilitate the entry of Na+ by oxidizing Na+-channels. Increased intracellular Na+ leads to an increase in Na+/Ca2+ exchange. The increased Na+ concentration by itself may produce electrical disturbance which would result in arrhythmia. Increased Ca2+ may affect proteases and may help in the conversion of xanthine dehydrogenase to xanthine oxidase, consequently increased production of super oxide radicals. Increased membrane lipid peroxidation and other oxygen free-radical associated membrane damage in myocytes has been demonstrated.  相似文献   
2.
Regulation and functional significance of phospholipase D in myocardium   总被引:3,自引:0,他引:3  
There is now clear evidence that receptor-dependent phospholipase D is present in myocardium. This novel signal transduction pathway provides an alternative source of 1,2-diacylglycerol, which activates isoforms of protein kinase C. The members of the protein kinase C family respond differently to various combinations of Ca2+, phosphatidylserine, molecular species of 1,2-diacylglycerol and other membrane phospholipid metabolites including free fatty acids. Protein kinase C isozymes are responsible for phosphorylation of specific cardiac substrate proteins that may be involved in regulation of cardiac contractility, hypertrophic growth, gene expression, ischemic preconditioning and electrophysiological changes. The initial product of phospholipase D, phosphatidic acid, may also have a second messenger role. As in other tissues, the question how the activity of phospholipase D is controlled by agonists in myocardium is controversial. Agonists, such as endothelin-1, atrial natriuretic factor and angiotensin 11 that are shown to activate phospholipase D, also potently stimulate phospholipase C- in myocardium. PMA stimulation of protein kinase C inactivates phospholipase C and strongly activates phospholipase D and this is probably a major mechanism by which agonists that promote phosphatidyl-4,5-bisphosphate hydrolysis secondary activate phosphatidylcholine-hydrolysis. On the other hand, one group has postulated that formation of phosphatidic acid secondary activates phosphatidyl-4,5-bisphosphate hydrolysis in cardiomyocytes. Whether GTP-binding proteins directly control phospholipase D is not clearly established in myocardium. Phospholipase D activation may also be mediated by an increase in cytosolic free Ca2+ or by tyrosine-phosphorylation.  相似文献   
3.
The capacity of the oxidative pentose phosphate pathway (PPP) in the heart is limited, since the activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of this pathway, is very low. Two mechanisms are involved in the regulation of this pathway. Under normal conditions, G-6-PD is inhibited by NADPH. This can be overcome in the isolated perfused rat heart by increasing the oxidized glutathione and by elevating the NADP+/NADPH ratio. Besides this rapid control mechanism, there is a long-term regulation which involves the synthesis of G-6-PD. The activity of G-6-PD was elevated in the rat heart during the development of cardiac hypertrophy due to constriction of the abdominal aorta and in the non-ischemic part of the rat heart subsequent to myocardial infarction. The catecholamines isoproterenol and norepinephrine stimulated the activity of myocardial G-6-PD in a time- and dose-dependent manner. The isoproterenol-induced stimulation was cAMP-dependent and due to increased new synthesis of enzyme protein. The G-6-PD mRNA was elevated by norepinephrine. As a consequence of the stimulation of the oxidative PPP, the available pool of 5-phosphoribosyl-l-pyrophosphate (PRPP) was expanded. PRPP is an important precursor substrate for purine and pyrimidine nucleotide synthesis. The limiting step in the oxidative PPP, the G-6-PD reaction, can be bypassed with ribose. This leads to an elevation of the cardiac PRPP pool. The decline in ATP that is induced in many pathophysiological conditions was attenuated or even entirely prevented by i.v. infusion of ribose. In two in vivo rat models, the overloaded and catecholamine-stimulated heart and the infarcted heart, the normalization of the cardiac adenine nucleotide pool by ribose was accompanied by an improvement of global heart function. Combination of ribose with adenine or inosine in isoproterenol-treated rats was more effective to restore completely the cardiac ATP level within a short period of time than either intervention alone. (Mol Cell Biochem 160/161: 101–109, 1996)  相似文献   
4.
High-mobility group box1 (HMGB1) induces inflammatory injury, and emerging reports suggest that it is critical for brain ischemia reperfusion. Engeletin, a natural Smilax glabra rhizomilax derivative, is reported to possess anti-inflammatory activity. Herein, we examined the mechanism of engeletin-mediated neuroprotection in rats having transient middle cerebral artery occlusion (tMCAO) against cerebral ischemia reperfusion injury. Male SD rats were induced using a 1.5 h tMCAO, following by reperfusion for 22.5 h. Engeletin (15, 30 or 60 mg/kg) was intravenously administered immediately following 0.5 h of ischemia. Based on our results, engeletin, in a dose-dependent fashion, reduced neurological deficits, infarct size, histopathological alterations, brain edema and inflammatory factors, namely, circulating IL-1β, TNF-α, IL-6 and IFN-γ. Furthermore, engeletin treatment markedly reduced neuronal apoptosis, which, in turn, elevated Bcl-2 protein levels, while suppressing Bax and Cleaved Caspase-3 protein levels. Meanwhile, engeletin significantly reduces overall expressions of HMGB1, TLR4, and NF-κB and attenuated nuclear transfer of nuclear factor kappa B (NF-κB) p65 in ischemic cortical tissue. In conclusion, engeletin strongly prevents focal cerebral ischemia via suppression of the HMGB1/TLR4/NF-κB inflammatory network.  相似文献   
5.
Gap junctions (GJ) are important determinants of cardiac conduction and the evidence has recently emerged that altered distribution of these junctions and changes in the expression of their constituent connexins (Cx) may lead to abnormal coupling between cardiomyocytes and likely contribute to arrhythmogenesis. However, it is largely unknown whether changes in the expression and distribution of the major cardiac GJ protein, Cx43, is a general feature of diverse chronic myocardial diseases or is confined to some particular pathophysiological settings. In the present study, we therefore set out to investigate qualitatively and quantitatively the distribution and expression of Cx43 in normal human myocardium and in patients with dilated (DCM), ischemic (ICM), and inflammatory cardiomyopathies (MYO). Left ventricular tissue samples were obtained at the time of cardiac transplantation and investigated with immunoconfocal and electron microscopy. As compared with the control group, Cx43 labeling in myocytes bordering regions of healed myocardial infarction (ICM), small areas of replacement fibrosis (DCM) and myocardial inflammation (MYO) was found to be highly disrupted instead of being confined to the intercalated discs. In all groups, myocardium distant from these regions showed an apparently normal Cx43 distribution at the intercalated discs. Quantitative immunoconfocal analyis of Cx43 in the latter myocytes revealed that the Cx43 area per myocyte area or per myocyte volume is significantly decreased by respectively 30 and 55% in DCM, 23 and 48% in ICM, and by 21 and 40% in MYO as compared with normal human myocardium. In conclusion, focal disorganization of GJ distribution and down-regulation of Cx43 are typical features of myocardial remodeling that may play an important role in the development of an arrhythmogenic substrate in human cardiomyopathies.  相似文献   
6.
1. The original concept of the ischemic penumbra surrounding a focus of dense cerebral ischemia is based on electrophysiological observations. In the cortex of baboons following middle cerebral artery occlusion, complete failure of the cortical evoked potential was observed at a cerebral blood flow (CBF) threshold level of approx. 0.15 ml/g/min—a level at which extracellular potassium ion activity was only mildly elevated. With a greater CBF decrement to the range of 0.06–0.10 ml/g/min, massive increases in extracellular potassium occurred and were associated with complete tissue infarction. Thus, the ischemic penumbra has been conceptualized as a region in which CBF reduction has exceeded the threshold for failure of electrical function but not that for membrane failure.2. Recent studies demonstrate that the penumbra as defined classically by the flow thresholds does not survive prolonged periods of ischemia. The correlation of CBF autoradiograms with diffusion-weighted MR images and the regional distribution of cerebral metabolites reveals that the ischemic core region enlarges when adjacent, formerly penumbral, areas undergo irreversible deterioration during the initial hours of vascular occlusion. At the same time, the residual penumbra becomes restricted to the periphery of the ischemic territory, and its fate may depend critically upon early therapeutic intervention.3. In the border zone of brain infarcts, marked uncoupling of local CBF and glucose utilization is consistently observed. The correlation with electrophysiological measurements shows that metabolism-flow uncoupling is associated with sustained deflections of the direct current (DC) potential resembling transient depolarizations. Such penumbral cell depolarizations, which are associated with an increased metabolic workload, induce episodes of tissue hypoxia due to the constrained collateral flow, stimulate anaerobic glycolysis leading to lactacidosis, suppress protein synthesis, and, finally, compromise energy metabolism. The frequency of their occurrence correlates with the final volume of ischemic injury. Therefore, penumbral depolarizations are regarded as a key event in the pathogenesis of ischemic brain injury. Periinfarct DC deflections can be suppressed by NMDA and non-NMDA antagonists, resulting in a significant reduction of infarct size.4. The histopathological sequelae within the penumbra consist of various degrees of scattered neuronal injury, also termed incomplete infarction. The reduction of neuronal density at the infarct border is a flow- and time-dependent event which is accompanied by an early response of glial cells. As early as 3 hr after vascular occlusion a generalized microglial activation can be detected throughout the ipsilateral cortex. Astrocytic activation is observed in the intact parts of the ischemic hemisphere from 6 hr postocclusion onward. Thus, the penumbra is a spatially dynamic brain region of limited viability which is characterized by complex pathophysiological changes involving neuronal function as well as glial activation in response to local ischemic injury.  相似文献   
7.
The occurrence and development of ischemic stroke are closely related to cerebral blood flow. Real‐time monitoring of cerebral perfusion level is very useful for understanding the mechanisms of the disease. A wide field of view (FOV) is conducive to capturing lesions and observing the progression of the disease. In this paper, we attempt to monitor the whole‐brain microcirculation in middle cerebral artery occlusion (MCAO) rats over time using a wide FOV swept‐source OCT (SS‐OCT) system. A constrained image registration algorithm is used to remove motion artifacts that are prone to occur in a wide FOV angiography. During ischemia, cerebral perfusion levels in the left and right hemispheres, as well as in the whole brain were quantified and compared. Changes in the shape and location of blood vessels were also recorded. The results showed that the trend in cerebral perfusion levels of both hemispheres was highly consistent during MCAO, and the position of the blood vessels varied over time. This work will provide new insights of ischemic stroke and is helpful to assess the effectiveness of potential treatment strategies.   相似文献   
8.
Cynandione A, an acetophenone from the roots of Cynanchum auriculatum and other species in the genus attenuates neurotoxicity of a variety of neurotoxic agents such as l-glutamate in vitro. In this study, we sought to further characterize the neuroprotective effects of cynandione A and other acetophenones from the roots of C. auriculatum in pheochromocytoma tumor cell line PC12 and investigate whether cynandione A protected against ischemic injuries in rats with experimentally induced cerebral ischemia. Viability assays using the 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophen-yl)-2H-tetrazolium monosodium salt method and lactate dehydrogenase (LDH) release assays showed that cynandione A dose-dependently attenuated glutamate-induced cytotoxicity. Comparative proteomic analysis by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight MS/MS of PC12 cells treated with cynandione A showed 10 μM cynandione A caused broad changes in protein expression in PC12 cells including down-regulation of high mobility group box 1 (HMGB1) and dihydropyrimidinase-like 2 (DPYSL2). Immunoblotting studies showed that 10 μM cynandione A aborted glutamate-induced increase in DPYSL2 and HMGB1 levels in PC12 cells and 30 mg/kg cynandione A also attenuated the rise in HMGB1 levels and mitigated DPYSL2 cleavage in brain tissues of rats with cerebral ischemia. Furthermore, rats with cerebral ischemia treated with 30 mg/kg cynandione A exhibited markedly improved neurological deficit scores at 24 and 72 h compared with control and a 7.2% reduction in cerebral infarction size at 72 h (p < 0.05 vs. control). Our findings demonstrated that cynandione A mitigated ischemic injuries and should be further explored as a neuroprotective agent for ischemic stroke.  相似文献   
9.
10.
Alterations in cardiac membrane Ca2+ transport during oxidative stress   总被引:3,自引:0,他引:3  
Although cardiac dysfunction due to ischemia-reperfusion injury is considered to involve oxygen free radicals, the exact manner by which this oxidative stress affects the myocardium is not clear. As the occurrence of intracellular Ca2+ overload has been shown to play a critical role in the genesis of cellular damage due to ischemia-reperfusion, this study was undertaken to examine whether oxygen free radicals are involved in altering the sarcolemmal Ca2+-transport activities due to reperfusion injury. When isolated rat hearts were made globally ischemic for 30 min and then reperfused for 5 min, the Ca2+ -pump and Na+-Ca2+ exchange activities were depressed in the purified sarcolemmal fraction; these alterations were prevented when a free radical scavenger enzymes (superoxide dismutase plus catalase) were added to the reperfusion medium. Both the Ca2+- pump and Na+- Ca2+ exchange activities in control heart sarcolemmal preparations were depressed by activated oxygen-generating systems containing xanthine plus xanthine oxidase and H2O2; these changes were prevented by the inclusion of superoxide dismutase and catalase in the incubation medium. These results support the view that oxidative stress during ischemia-reperfusion may contribute towards the occurrence of intracellular Ca2+ overload and subsequent cell damage by depressing the sarcolemmal mechanisms governing the efflux of Ca2+ from the cardiac cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号