首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2004年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.  相似文献   
2.
Building protein interaction maps for Down's syndrome.   总被引:4,自引:0,他引:4  
Now that the complete sequences for human chromosome 21 and the orthologous mouse genomic regions are known, reasonably complete, conserved, protein-coding gene catalogues are also available. The central issue now facing Down's syndrome researchers is the correlation of increased expression of specific, normal, chromosome 21 genes with the development of specific deficits in learning and memory. Because of the number of candidate genes involved, the number of alternative splice variants of individual genes and the number of pathways in which these genes function, a pathway analysis approach will be critical to success. Here, three examples, both gene specific and pathway related, that would benefit from pathway analysis are discussed: (1) the potential roles of eight chromosome 21 proteins in RNA processing pathways; (2) the chromosome 21 protein intersectin 1 and its domain composition, alternative splicing, protein interactions and functions; and (3) the interactions of ten chromosome 21 proteins with components of the mitogen-activated protein kinase and the calcineurin signalling pathways. A productive approach to developing gene-phenotype correlations in Down's syndrome will make use of known and predicted functions and interactions of chromosome 21 genes to predict pathways that may be perturbed by their increased levels of expression. Investigations may then be targeted in animal models to specific interactions, intermediate steps or end-points of such pathways and the downstream - perhaps amplified - consequences of gene dosage directly assessed. Once pathway perturbations have been identified, the potential for rational design of therapeutics becomes practical.  相似文献   
3.
Endocytosis of cell surface proteins is mediated by a complex molecular machinery that assembles on the inner surface of the plasma membrane. Here, we report the identification of two ubiquitously expressed human proteins, stonin 1 and stonin 2, related to components of the endocytic machinery. The human stonins are homologous to the Drosophila melanogaster stoned B protein and exhibit a modular structure consisting of an NH(2)-terminal proline-rich domain, a central region of homology specific to the stonins, and a COOH-terminal region homologous to the mu subunits of adaptor protein (AP) complexes. Stonin 2, but not stonin 1, interacts with the endocytic machinery proteins Eps15, Eps15R, and intersectin 1. These interactions occur via two NPF motifs in the proline-rich domain of stonin 2 and Eps15 homology domains of Eps15, Eps15R, and intersectin 1. Stonin 2 also interacts indirectly with the adaptor protein complex, AP-2. In addition, stonin 2 binds to the C2B domains of synaptotagmins I and II. Overexpression of GFP-stonin 2 interferes with recruitment of AP-2 to the plasma membrane and impairs internalization of the transferrin, epidermal growth factor, and low density lipoprotein receptors. These observations suggest that stonin 2 is a novel component of the general endocytic machinery.  相似文献   
4.
Signaling on the endocytic pathway   总被引:4,自引:0,他引:4  
Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.  相似文献   
5.
Intersectins (ITSNs) have been shown to act as adaptor proteins that govern multiple cellular events via regulating Cdc42 activity. However, it remains to be determined whether the ITSN-Cdc42 pathway is functional in porcine oocytes. To address this question, we used a small molecule, ZCL278, to selectively disrupt the ITSN2-Cdc42 interaction. In the present study, we find that porcine oocytes exposed to ZCL278 are unable to completely progress through meiosis. Meanwhile, the spindle defects and chromosomal congression failure are frequently detected in these oocytes. In support of this, we observed the accumulated distribution of vesicle-like ITSN2 signals around the chromosome/spindle region during porcine oocyte maturation. In addition, our results also showed that inhibition of the ITSN-Cdc42 interaction impairs the actin polymerization in porcine oocytes. In summary, the findings support a model where ITSNs, through the interaction with Cdc42, modulates the assembly of meiotic apparatus and actin polymerization, consequently ensuring the orderly meiotic progression during porcine oocyte maturation.  相似文献   
6.
《Cell reports》2020,30(2):409-420.e6
  1. Download : Download high-res image (135KB)
  2. Download : Download full-size image
  相似文献   
7.
Xie J  Vandenbroere I  Pirson I 《FEBS letters》2008,582(20):3011-3017
We identified intersectin1 (ITSN1) as a new binding partner of the SH2 domain containing inositol 5-phosphatase 2 (SHIP2). The interaction between SHIP2 and ITSN1 was confirmed in vivo. Src homology 3D, A, C, and E domains of ITSN1 were shown to be implicated in the interaction. In response to epidermal growth factor, SHIP2 expression could recruit the ITSN1 short form (ITSN1-S) to the cell membrane, while SHIP2 overexpression did not modulate the ITSN-mediated extracellular signal-regulated kinase1/2 and c-Jun NH2-terminal kinase activation. Our data provide a molecular link between SHIP2 and ITSN1 which are involved in receptor endocytosis regulation. STRUCTURED SUMMARY:  相似文献   
8.
Neurotransmission involves the exo-endocytic cycling of synaptic vesicle (SV) membranes. Endocytic membrane retrieval and clathrin-mediated SV reformation require curvature-sensing and membrane-bending BAR domain proteins such as endophilin A. While their ability to sense and stabilize curved membranes facilitates membrane recruitment of BAR domain proteins, the precise mechanisms by which they are targeted to specific sites of SV recycling has remained unclear. Here, we demonstrate that the multi-domain scaffold intersectin 1 directly associates with endophilin A to facilitate vesicle uncoating at synapses. Knockout mice deficient in intersectin 1 accumulate clathrin-coated vesicles at synapses, a phenotype akin to loss of endophilin function. Intersectin 1/endophilin A1 complex formation is mediated by direct binding of the SH3B domain of intersectin to a non-canonical site on the SH3 domain of endophilin A1. Consistent with this, intersectin-binding defective mutant endophilin A1 fails to rescue clathrin accumulation at neuronal synapses derived from endophilin A1-3 triple knockout (TKO) mice. Our data support a model in which intersectin aids endophilin A recruitment to sites of clathrin-mediated SV recycling, thereby facilitating vesicle uncoating.  相似文献   
9.
Intersectins (Itsn) are conserved EH and SH3 domain containing adaptor proteins. In Drosophila melanogaster, ITSN is required to regulate synaptic morphology, to facilitate efficient synaptic vesicle recycling and for viability. Here, we report our genetic analysis of Caenorhabditis elegans intersectin. In contrast to Drosophila , C. elegans itsn-1 protein null mutants are viable and display grossly normal locomotion and development. However, motor neurons in these mutants show a dramatic increase in large irregular vesicles and accumulate membrane-associated vesicles at putative endocytic hotspots, approximately 300 nm from the presynaptic density. This defect occurs precisely where endogenous ITSN-1 protein localizes in wild-type animals and is associated with a significant reduction in synaptic vesicle number and reduced frequency of endogenous synaptic events at neuromuscular junctions (NMJs). ITSN-1 forms a stable complex with EHS-1 (Eps15) and is expressed at reduced levels in ehs-1 mutants. Thus, ITSN-1 together with EHS-1, coordinate vesicle recycling at C. elegans NMJs. We also found that both itsn-1 and ehs-1 mutants show poor viability and growth in a Disabled (dab-1) null mutant background. These results show for the first time that intersectin and Eps15 proteins function in the same genetic pathway, and appear to function synergistically with the clathrin-coat-associated sorting protein, Disabled, for viability.  相似文献   
10.
We have identified a approximately 140 amino acid domain that is shared by a variety of proteins in budding and fission yeast, nematode, rat, mouse, frog, oat, and man. Typically, this domain is located within 20 residues of the N-terminus of the various proteins. The percent identity among the domains in the 12 proteins ranges from 42 to 93%, with 16 absolutely conserved residues: N-x(11-13)-V-x2-A-T-x(34-36)-R-x(7-8)-W-R-x3-K-x12-G-x-E-x15 -L-x11-12-D-x-G-R-x11-D-x7-R. Even though these proteins share little beyond their segment of homology, data are emerging that several of the proteins are involved in endocytosis and or regulation of cytoskeletal organization. We have named this protein segment the ENTH domain, for Epsin N-terminal Homology domain, and hypothesize that it is a candidate for binding specific ligands and/or enzymatic activity in the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号