首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   14篇
  国内免费   17篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   8篇
  2019年   8篇
  2018年   11篇
  2017年   6篇
  2016年   9篇
  2015年   7篇
  2014年   23篇
  2013年   44篇
  2012年   15篇
  2011年   17篇
  2010年   16篇
  2009年   23篇
  2008年   24篇
  2007年   19篇
  2006年   14篇
  2005年   11篇
  2004年   8篇
  2003年   13篇
  2002年   13篇
  2001年   3篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1974年   2篇
  1973年   3篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
1.
Defective interfering (DI) influenza viruses carry a large deletion in a gene segment that interferes with the replication of infectious virus; thus, such viruses have potential for antiviral therapy. However, because DI viruses cannot replicate autonomously without the aid of an infectious helper virus, clonal DI virus stocks that are not contaminated with helper virus have not yet been generated. To overcome this problem, we used reverse genetics to generate a clonal DI virus with a PB2 DI gene, amplified the clonal DI virus using a cell line stably expressing the PB2 protein, and confirmed its ability to interfere with infectious virus replication in vitro. Thus, our approach is suitable for obtaining purely clonal DI viruses, will contribute to the understanding of DI virus interference mechanisms and can be used to develop DI virus‐based antivirals.  相似文献   
2.
3.
In a previous work (Kömen et al. 1991) it has been concluded that membrane fragments isolated from autotrophically grown Alcaligenes eutrophus H16 contain several iron-sulphur centres along with haems of a-, b-, c-, and d-type. These redox components have been proposed to be part of a branched respiratory chain leading to multiple membrane bound oxidases. Here, some of the respiratory activities catalyzed by membrane fragments from wild type cells of A. eutrophus (H16) and, for comparison, Paracoccus denitrificans, have been investigated through the use of electron transport inhibitors. Cyanide (CN-) titration curves indicated that in A. eutrophus H16 oxidation of succinate and H2 preferentially proceeds via the cytochrome c oxidase(s) branch (I 50=2 · 10-5 M) whereas the NADH dependent respiration started being inhibited at higher CN- concentrations (I 50=5 · 10-4 M). In membranes isolated from both, cells harvested at late growth-phase (OD 12) and from a mutant deficient in cytochrome c oxidase activity (A. eutrophus RK1), respiration was insensitive to low CN- concentrations (< 10-4 M), and it was sustained by the high catalytic activities of two quinol oxidases. These alternative oxidases of b- (formally o-) and d-type showed different sensitivities to KCN (I 50=10-3 M and 10-2 M, respectively). Interestingly, the cytochrome c oxidase(s) dependent respiration of H16 membranes was insensitive to antimycin A but largely inhibited by myxothiazol (10-6 M). This, and previous work (Kömen et al. 1991), suggest that although the respiratory chain of A. eutrophus is endowed with a putative bc 1 complex, its biochemical nature and role in respiration of this organism are apparently different from those of P. denitrificans. The peculiarity of the respiratory chain of A. eutrophus is confirmed by the rotenone insensitivity of the NADH oxidation in both protoplasts and membrane fragments from wild type and soluble hydrogenase deficient cells (HF14 and HF160). A tentative model of the respiratory chain of autotrophically grown A. eutrophus is presented.  相似文献   
4.
The defective kernel (dek) mutants of maize are altered in both their embryo and endosperm development. Earlier studies have indicated that some of the dek mutants are unable to form shoot apical meristems or leaf primoirda. We have examined three embryo lethal dek mutants of this type, ptd*-1130, cp*-1418, and bno*-747B, to obtain a developmental profile for each. Allelism tests show that these three mutants are not allelic. Embryos were examined in early, mid-, and late kernel development as well as at kernel maturity by dissection and sectioning procedures and also at kernel maturity by scanning electron microscopy. All three mutants lag behind normal embryos in their rate of development. Embryos of ptd*-1130 reached the transition stage by early kernel development and progressed no further but underwent cell enlargement and necrosis during late kernel development. Embryos of cp*-1418 reached an early coleoptilar stage by midkernel development. They subsequently increased in size but did not form any leaf primordia. At kernel maturity, they no longer had a shoot apical meristem but often had a well formed root meristem. They appeared to remain healthy and did not become necrotic. Embryos of bno*747B reached the early coleoptilar stage by early kernel development but progressed no further. By kernel maturity, they had grown into masses of irregularly shaped embryonic tissue that no longer resembled any normal embryo stage but were not necrotic. None of these three mutants responded to attempts to support continued embryo development when cultured, but all three mutants formed callus on N6 and MS media supplemented with 2,4-D. These results indicate that these mutants are all uniformly blocked at specific stages early in embryonic development, have different subsequent developmental fates, and represent three different genes performing unique functions that are essential for embryogenesis.  相似文献   
5.
Expression of human immunodeficiency virus-1 integrase in Escherichia coli, at levels that had no effect on bacterial cell growth, blocked plaque formation by bacteriophages having single-stranded genomic DNA (M13) or RNA (R17, Q, PRR1). Plaque formation by phages having double-stranded genomic DNA (T4, PR4) was unaffected. Integrase also inhibited infection by the phagemid M13KO7, but it had no effect on production of phage once infection by M13KO7 was established. This result indicated that integrase affects an early stage in infection. Integrase also inhibited phage production following transfection by either single-stranded or double-stranded (replicative form) M13 DNA, it blocked M13 DNA replication, as assayed by incorporation of radioactive nucleotides into DNA, and it failed to affect bacterial pilus function. These data suggest that integrase interacts in vivo with phage nucleic acid, a conclusion supported by studies in which integrase was shown to have a DNA-binding activity in its C-terminal portion. This portion of integrase was both necessary and sufficient for interference of plaque formation by M13 in the present study. Expression of the N-terminal portion of integrase at the same level as intact integrase had little effect on phage growth, indicating that expression of foreign protein in general was not responsible for the inhibitory effect. The simple bacteriophage assay described is potentially useful for identifying integrase mutants that lack single-stranded DNA binding activity.  相似文献   
6.
Protein folding conditions were established for human immunodeficiency virus integrase (IN) obtained from purified bacterial inclusion bodies. IN was denatured by 6 M guanidine.HCl-5 mM dithiothreitol, purified by gel filtration, and precipitated by ammonium sulfate. The reversible solvation of precipitated IN by 6 M guanidine.HCl allowed for wide variation of protein concentration in the folding reaction. A 6-fold dilution of denatured IN by 1 M NaCl buffer followed by dialysis produced enzymatically active IN capable of 3' OH end processing, strand transfer, and disintegration using various human immunodeficiency virus-1 (HIV-1) long terminal repeat DNA substrates. The specific activities of folded IN preparations for these enzymatic reactions were comparable to those of soluble IN purified directly from bacteria. The subunit composition and enzymatic activities of IN were affected by the folding conditions. Standard folding conditions were defined in which monomers and protein aggregates sedimenting as dimers and tetramers wree produced. These protein aggregates were enzymatically active, whereas monomers had reduced strand transfer activity. Temperature modifications of the folding conditions permitted formation of mainly monomers. Upon assaying, these monomers were efficient for strand transfer and disintegration, but the oligomeric state of IN under the conditions of the assay is determinate. Our results suggest that monomers of the multidomain HIV-1 IN are folded correctly for various catalytic activities, but the conditions for specific oligomerization in the absence of catalytic activity are undefined.  相似文献   
7.
Toxoplasma gondii, growing exponentially in heavily infected mutant Chinese hamster ovary cells that had a defined defect in purine biosynthesis, did not incorporate [U-14C]glucose or [14C]formate into the guanine or adenine of nucleic acids. Intracellular parasites therefore must be incapable of synthesizing purines and depend on their host cells for them. Extracellular parasites, which are capable of limited DNA and RNA synthesis, efficiently incorporated adenosine nucleotides, adenosine, inosine, and hypoxanthine into their nucleic acids; adenosine 5′-monophosphate was the best utilized precursor. Extracellular parasites incubated with ATP labeled with 3H in the purine base and 32P in the α-phosphate incorporated the purine ring 50-fold more efficiently than they did the α-phosphate. Thus, ATP is largely degraded to adenosine before it can be used by T. gondii for nucleic acid synthesis. Two pathways for the conversion of adenosine to nucleotides appear to exist, one involving adenosine kinase, the other hypoxanthine—guanine phosphoribosyl transferase. In adenosine kinase-less mutant parasites, the efficiency of incorporation of ATP or adenosine was reduced by 75%, which indicates the adenosine kinase pathway was predominant. Extracellular parasites incorporated ATP into both the adenine and the guanine of their nucleic acids, so ATP from the host cell could supply the entire purine requirement of T. gondii. However, ATP generated by oxidative phosphorylation in the host cell is not essential for parasites because they grew normally in a cell mutant that was deficient in aerobic respiration and almost completely dependent upon glycolysis.  相似文献   
8.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   
9.
Previous studies have identified a series of imidazo[1,2-a]pyridine (IZP) derivatives as potent allosteric inhibitors of HIV-1 integrase (ALLINIs) and virus infection in cell culture. However, IZPs were also found to be relatively potent activators of the pregnane-X receptor (PXR), raising the specter of induction of CYP-mediated drug disposition pathways. In an attempt to modify PXR activity without affecting anti-HIV-1 activity, rational structure-based design and modeling approaches were used. An X-ray cocrystal structure of (S,S)-1 in the PXR ligand binding domain (LBD) allowed an examination of the potential of rational structural modifications designed to abrogate PXR. The introduction of bulky basic amines at the C-8 position provided macrocyclic IZP derivatives that displayed potent HIV-1 inhibitory activity in cell culture with no detectable PXR transactivation at the highest concentration tested.  相似文献   
10.
Baculoviruses have enormous potential for use as biopesticides to control insect pest populations without the adverse environmental effects posed by the widespread use of chemical pesticides. However, continuous baculovirus production is susceptible to DNA mutation and the subsequent production of defective interfering particles (DIPs). The amount of DIPs produced and their genome length distribution are of great interest not only for baculoviruses but for many other DNA and RNA viruses. In this study, we elucidate this aspect of virus replication using baculovirus as an example system and both experimental and modeling studies. The existing mathematical models for the virus replication process consider DIPs as a lumped quantity and do not consider the genome length distribution of the DIPs. In this study, a detailed population balance model for the cell‐virus culture is presented, which predicts the genome length distribution of the DIP population along with their relative proportion. The model is simulated using the kinetic Monte Carlo algorithm, and the results agree well with the experimental results. Using this model, a practical strategy to maintain the DIP fraction to near to its maximum and minimum limits has been demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号