首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   26篇
  国内免费   34篇
  448篇
  2023年   3篇
  2022年   10篇
  2021年   9篇
  2020年   10篇
  2019年   11篇
  2018年   9篇
  2017年   8篇
  2016年   12篇
  2015年   9篇
  2014年   14篇
  2013年   33篇
  2012年   9篇
  2011年   21篇
  2010年   11篇
  2009年   10篇
  2008年   13篇
  2007年   19篇
  2006年   13篇
  2005年   19篇
  2004年   10篇
  2003年   10篇
  2002年   11篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   6篇
  1995年   14篇
  1994年   9篇
  1993年   8篇
  1992年   13篇
  1991年   7篇
  1990年   12篇
  1989年   11篇
  1988年   18篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有448条查询结果,搜索用时 15 毫秒
1.
Summary Two varieties of tomato (Pusa Rubi and Selection 120) positively responded to algal inoculation in terms of the yield of fruits and shoots, but there was no significant effect on the vitamin C content of the fruits. A combined application of urea and algae was more effective than the application of urea alone.  相似文献   
2.
3.
Fifty strains of Frankia were tested for their ability to nodulate six species of actinorhizal plants. Pure cultured strains were used to inoculate seedlings of Alnus glutinosa (L.) Gaertn., Alnus rubra Bong., Casuarina equisetifolia L., Elaeagnus angustifolia L., Hippophaë rhamnoides L. and Myrica cerifera L. in nutrient solution culture. From the results of this study, host inoculation groups among the actinorhizal plants were defined. Although overlap between host inoculation groups appears to be common, the results from this study did not support the view that Frankia strains are promiscuous. All Frankia strains tested in this study could easily be classified into four major host-specificity groups.  相似文献   
4.
Summary The response of tomato (Lycopersicon esculentum Mill) to inoculation with the vasicular arbuscular mycorrhizal (VAM) fungusGlomus fasiculatum andAzotobacter vinelandii singly and in combination was tested in the field. It was found thatG. fasiculatum as well asA. vinelandii significantly increased leaf area, shoot dry weight, nitrogen content phosphorus content and yield in respect to uninoculated control. While, VAM fungal treatment alone could bring about substantial increase in growth, nitrogen content, phosphorus content and yield, its combination withA. vinelandii produced additional effects on leaf area, shoot dry weight, phosphorus content and yield. Contribution No. 304/83 of Indian Institute of Horticultural Research, Bangalore-89.  相似文献   
5.
The growth response ofCalopogonium caeruleum, a leguminous covercrop in plantation agriculture, to inoculation with two vesicular-arbuscular mycorrhizal (VAM) fungi was investigated in five phosphorus (P)-deficient soils supplied with various levels of rock phosphate. Significant shoot yield increases over the uninoculated controls were obtained in most sterilised or unsterilised soils at all applied P levels, although the inoculant VAM fungi differed in their effectiveness in the soils used. Responses in mycorrhizal root infections, P and nitrogen (N) concentrations in tops and plant nodulation varied. The results are discussed in relation to the edaphic environment of the mycorrhizal association.  相似文献   
6.
Rooted cuttings ofCeanothus griseus varhorizontalis were irrigated with 0, 10, 20, 50, 75 or 100ppm nitrogen as NH4NO3 for eight weeks prior to inoculation with infectiveFrankia. After inoculation, half of the plants for each treatment nitrogen level continued to be irrigated with the preconditioning nitrogen level and half were given no more supplemental nitrogen. For plants continuously receiving nitrogen, nodule initiation (nodule number) was inversely correlated with increasing supplemental nitrogen levels, and suppressed above 50 ppm N. Leaf nitrogen above 2% in continuous-N plants correlated with greatly reduced or suppressed nodulation. Plants maintained after inoculation without supplemental nitrogen showed influence of the prior nitrogen treatment on nodulation. Preconditioning at 50 ppm and above greatly reduced the number of nodules formed. The evidence suggests that stored internal nitrogen can regulate nodulation.Plant biomass accumulated maximally when nodulation was suppressed, at 75 and 100 ppm supplemental N applied continuously. Internode elongation during the nodulation period occurred only on nodulated plants, or in the presence of supplemental N (10 ppm and above).  相似文献   
7.
The vesicular-arbuscular mycorrhizal fungi (VAMF) Glomus clarum (Nicol. and Schenck) isolate NT4, G. mosseae (Nicol. and Gerd.) Gerd. and Trappe isolate NT6 and G. versiforme (Karst.) Berch isolate NT7 coexist in wheat field soils in Saskatchewan. This study assessed the response of lentil (Lens esculenta L.) and wheat (Triticum aestivum L.) to monospecific and mixed cultures of these VAMF isolates. Seedlings were inoculated with 100 spores of a VAMF isolate, or an equal mixture of spores of two isolates, and grown in a sterile soil mix in a growth chamber. Both crops responded differently to these different VAMF isolates. In the case of lentil, G. clarum NT4 was more effective than G. mosseae NT6 and G. versiforme NT7, and significantly increased (P<0.05) the shoot dry weight (43%) and grain yield (57%) compared with the uninoculated control. There was a significant positive correlation between the percentage of VAMF colonized roots and shoot dry weight (r=0.672***) and shoot phosphorus concentration (r=0.608***) of lentil. In the case of wheat, G. clarum NT4 had no effect on shoot dry weight, but produced significant (P<0.08) increases in grain yield (12%) and the phosphorus concentration of the shoot and grain. Although G. clarum NT4 and G. mosseae NT6 both produced similar levels of VAM colonization in wheat, the only response of wheat to isolate NT6 was an increase in plant height at harvest. The efficacy of G. clarum NT4 on both crops appeared to be related to its ability to produce more arbuscular colonization than G. mosseae NT6. Dual inoculation of seedlings with G. clarum NT4 and G. mosseae NT6 resulted in competition between these two isolates. This was evident from a comparison of plant shoot dry weight and grain yield, and VAMF spore production on the two crops inoculated either with isolate NT4 alone or in combination with NT6. G. mosseae NT6 reduced the efficacy of G. clarum NT4 by 16% when dual inoculated on lentil, but had no effect when the host was wheat. Based on spore production, it was found that G. clarum NT4 was more competitive than G. mosseae NT6 when dual inoculated on lentil or wheat. Isolate NT4 produced ca. 2000 and 500 spores/ 100 g substrate, respectively, in the lentil and wheat pots, which was approximately 2–3 times more spores than those produced by isolate NT6 with either crop. When the plants were dual inoculated, there was a 15–19% reduction in spore production by G. clarum NT4 and a 50–70% decrease in spore production by G. mosseae NT6. Our results show that G. clarum NT4 was more competitive and effective in its ability to colonize and increase the growth and yield of lentil and wheat than G. mosseae NT6 or G. versiforme NT7. The relative performance of isolate NT4 with different host plants suggests that this VAMF isolate exhibits a host preference for lentil.  相似文献   
8.
The large-scale inoculation of selected beneficial ectomycorrhizal fungi in forest nurseries has generated renewed interest in the ecology of these symbiotic fungi. However, information on the dissemination and persistence of introduced symbionts is scarce due to the limitation of the current identification methods. To identify ectomycorrhizal fungi on single root tips, we investigated the polymorphism of the PCR-amplified ribosomal DNA intergenic spacer (IGS) from a wide range of ectomycorrhizal fungi. To investigate the reliability of this molecular approach in large-scale surveys, the dissemination and persistence on Douglas fir seedlings of the introduced Laccaria bicolor S238N were assessed in a forest nursery in the Massif Central (France). Several hundred ectomycorrhizas and fruiting bodies were sampled from plots where control and L. bicolor inoculated-Douglas fir seedlings were grown for 1.5 years. PCR typing of mycorrhizas indicated that trees inoculated with L. bicolor S238N remained exclusively colonized by that isolate (or sexually derived isolates) for the entire test period. In contrast, control seedlings were infected by indigenous isolates of Laccaria laccata and Thelephora terrestris. The molecular evidence for the persistence of the introduced mycobiont despite the competition from indigenous isolates of the same species provides further illustration of the potential of exotic species for large-scale microbial application.  相似文献   
9.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   
10.
Resistance conferred by the Tsw locus from Capsicum chinense against Tomato spotted wilt virus (TSWV) has been widely used in breeding programmes. Nevertheless, this resistance depends on inoculation conditions, and isolates able to overcome it have already been detected. In this work 29 accessions of several Capsicum species have been mechanically inoculated with TSWV to identify new sources of resistance. Five accessions showed variable percentages of resistant plants, two of which did not show local lesions on inoculated leaves, suggesting that the response was not mediated through hypersensitivity. Two of these accessions also had a remarkable reduced viral accumulation compared to susceptible control. ECU‐973., a C. chinense accession, showed the best performance against TSWV, with 100% resistant plants. This response was confirmed after mechanical inoculation with three different TSWV isolates. The resistance was maintained when the accession was inoculated with TSWV using a high pressure of viruliferous thrips. These results open new possibilities in the development of a durable resistance to TSWV in pepper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号