首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   4篇
  2023年   4篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2015年   1篇
  2013年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain‐of‐activity mouse model presents with a premature aging‐like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75‐week‐old) female C57BL/6 mice with a Cdc42 activity‐specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN‐treated animals displayed a youthful level of the aging‐associated cytokines IL‐1β, IL‐1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.  相似文献   
2.
3.
Inflammaging plays an important role in most age‐related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha‐1 antitrypsin (hAAT) has immune‐regulatory, anti‐inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti‐inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT‐expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti‐aging effect of hAAT, we monitored the expression of aging‐associated genes and found that aging‐induced expressions of Relish (NF‐?B orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA‐seq analysis revealed that innate immunity genes regulated by NF‐kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti‐inflammaging effect in human cells, we treated X‐ray‐induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL‐6 and IL‐8, two major factors of senescence‐associated secretory phenotype. Consistent with results from Drosophila,RNA‐seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA‐approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging‐related diseases.  相似文献   
4.
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age‐associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age‐associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age‐associated alterations in microbiota composition and immune homeostasis.  相似文献   
5.
6.
Tissue repair is negatively affected by advanced age. Recent evidence indicates that hematopoietic cell‐derived extracellular vesicles (EVs) are modulators of regenerative capacity. Here, we report that plasma EVs carrying specific surface markers indicate the degree of age‐associated immunosenescence; moreover, this immunosenescence phenotype was accentuated by fracture injury. The number of CD11b+Ly6CintermediateLy6Ghigh neutrophils significantly decreased with age in association with defective tissue regeneration. In response to fracture injury, the frequencies of neutrophils and associated plasma EVs were significantly higher in fracture calluses than in peripheral blood. Exposure of aged mice to youthful circulation through heterochronic parabiosis increased the number of neutrophils and their correlated Ly6G+ plasma EVs, which were associated with improved fracture healing in aged mice of heterochronic parabiosis pairs. Our findings create a foundation for utilizing specific immune cells and EV subsets as potential biomarkers and therapeutic strategies to promote resilience to stressors during aging.  相似文献   
7.
Necroptosis is a newly identified programmed cell death pathway that is highly proinflammatory due to the release of cellular components that promote inflammation. To determine whether necroptosis might play a role in inflammaging, we studied the effect of age and dietary restriction (DR) on necroptosis in the epididymal white adipose tissue (eWAT), a major source of proinflammatory cytokines. Phosphorylated MLKL and RIPK3, markers of necroptosis, were increased 2.7‐ and 1.9‐fold, respectively, in eWAT of old mice compared to adult mice, and DR reduced P‐MLKL and P‐RIPK3 to levels similar to adult mice. An increase in the expression of RIPK1 (1.6‐fold) and MLKL (2.7‐fold), not RIPK3, was also observed in eWAT of old mice, which was reduced by DR in old mice. The increase in necroptosis was paralleled by an increase in 14 inflammatory cytokines, including the pro‐inflammatory cytokines IL‐6 (3.9‐fold), TNF‐α (4.7‐fold), and IL‐1β (5.1‐fold)], and 11 chemokines in old mice. DR attenuated the expression of IL‐6, TNF‐α, and IL‐1β as well as 85% of the other cytokines/chemokines induced with age. In contrast, inguinal WAT (iWAT), which is less inflammatory, did not show any significant increase with age in the levels of P‐MLKL and MLKL or inflammatory cytokines/chemokines. Because the changes in biomarkers of necroptosis in eWAT with age and DR paralleled the changes in the expression of pro‐inflammatory cytokines, our data support the possibility that necroptosis might play a role in increased chronic inflammation observed with age.  相似文献   
8.
Preservation of sleep, a proper nutrition and adequate physical exercise are key elements for healthy aging. Aging causes sleep alterations, and in turn, sleep disturbances lead to numerous pathophysiological changes that accelerates the aging process. In the central nervous system, sleep loss impairs the clearance of waste molecules like amyloid-β or tau peptides. Melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, is effective both as a chronobiotic and a cytoprotective agent to maintain a healthy aging. The late afternoon increase of melatonin “opens the sleep doors” every night and its therapeutic use to preserve slow wave sleep has been demonstrated. Melatonin reverses inflammaging via prevention of insulin resistance, suppression of inflammation and down regulation of proinflammatory cytokines. Melatonin increases the expression of α- and γ-secretase and decreases β-secretase expression. It also inhibits tau phosphorylation. Clinical data support the efficacy of melatonin to treat Alzheimer’s disease, particularly at the early stages of disease. From animal studies the cytoprotective effects of melatonin need high doses to become apparent (i.e. in the 40–100 mg/day range). The potentiality of melatonin as a nutraceutical is discussed.  相似文献   
9.
Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.  相似文献   
10.
Microglia dynamically adapt their morphology and function during increasing age. However, the mechanisms behind these changes are to date poorly understood. Glucocorticoids (GCs) are long known and utilized for their immunomodulatory actions and endogenous GC levels are described to alter with advancing age. We here tested the hypothesis that age‐associated elevations in GC levels implicate microglia function and morphology. Our data indicate a decrease in microglial complexity and a concomitant increase in GC levels during aging. Interestingly, enhancing GC levels in young mice enhanced microglial ramifications, while the knockdown of the glucocorticoid receptor expression in old mice aggravated age‐associated microglial amoebification. These data suggest that GCs increase ramification of hippocampal microglia and may modulate age‐associated changes in microglial morphology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号