首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4200篇
  免费   898篇
  国内免费   2211篇
  2024年   57篇
  2023年   335篇
  2022年   240篇
  2021年   357篇
  2020年   372篇
  2019年   447篇
  2018年   333篇
  2017年   356篇
  2016年   368篇
  2015年   311篇
  2014年   311篇
  2013年   344篇
  2012年   267篇
  2011年   279篇
  2010年   255篇
  2009年   306篇
  2008年   266篇
  2007年   315篇
  2006年   253篇
  2005年   227篇
  2004年   180篇
  2003年   156篇
  2002年   141篇
  2001年   131篇
  2000年   110篇
  1999年   81篇
  1998年   96篇
  1997年   57篇
  1996年   67篇
  1995年   37篇
  1994年   27篇
  1993年   32篇
  1992年   47篇
  1991年   23篇
  1990年   35篇
  1989年   14篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   11篇
  1984年   5篇
  1983年   6篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1958年   8篇
排序方式: 共有7309条查询结果,搜索用时 203 毫秒
1.
The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end‐of‐life recycling rates (EOL‐RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in‐use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low‐cost (which thereby keeps down the price of scrap), many EOL‐RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL‐RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors.  相似文献   
2.
The aim of this article is to quantify the drivers for the changes in raw material consumption (domestic material consumption expressed in the form of all materials extracted and used in the production phase) in terms of technology, which refers to the concept of sustainable production; the product structure of final demand, which refers to the concept of sustainable consumption; and the volume of final demand, which is related to economic growth. We also aim to determine to what extent the technological development and a shift in product structure of the final demand compensate for the growth in final consumption volume. Therefore, we apply structural decomposition analysis (SDA) to the change in raw material consumption (RMC) of the Czech Republic between 2000 and 2007. To present the study in a broader context, we also show other material flow indicators for the Czech Republic for 2000 and 2007. Our findings of SDA show that final demand structure has a very limited effect on the change in material flows. The rapid change in final demand volume was not compensated for crude oil, metal ores, construction materials, food crops, and timber. For the material category of non‐iron metal ores, even the change in technology contributes to an increase in material flows. The largest relative increases are reported for non‐iron metal ores (38%) and construction materials (30%). The main changes in material flows related to the Czech Republic are driven by exports and enabled by imports, the main source of these increased material flows. This emphasizes the increasing role of international trade.  相似文献   
3.
  相似文献   
4.
生态意识及其主要特点   总被引:7,自引:0,他引:7  
一、生态意识产生的时代背景生态意识作为人类思想的先进观念,产生于20世纪后半叶。产业革命以来二百多年,人类依据先进科学技术武装的强大生产力,无限制地向自然进  相似文献   
5.
6.
Industrial ecologists have modeled with precision the material foundations of industrial systems, but given less attention to the demand for products and the drivers of structural changes in these systems. This article suggests that time use data complement data on monetary expenditure and can be used to elucidate the everyday life context in which the changes in the economy take place. It builds upon the claim that goods are not direct sources of utility, but enter specific household activities as inputs. A second argument for the proposed approach is that it can be used to introduce and foster human agency in analyses of production systems. The article uses Finnish time use survey data, consumption expenditure data, and data on the sectoral energy intensities of financial output in the Finnish economy. First, a measure of the energy intensity of activities is derived by relating consumer time use and the required direct and indirect energy requirements. Second, the results include a decomposition of changes in the energy requirements of private consumption in Finland during the 1990s. It is shown that although the same activities on average require increasing energy inputs per unit of time, Finns have simultaneously changed the structure of their everyday life toward less energy-intensive activities.  相似文献   
7.
Ecological quality assessment of non-natural water bodies is, in contrast to natural systems, less developed and requires determining biological indicators that reliably reflect environmental conditions and anthropogenic pressures. This study was motivated to propose fish indicators appropriate for assessment of reservoir ecosystems in central Europe. We analysed changes in water quality, total biomass and the taxonomic, trophic and size composition of fish communities along the longitudinal axes of four elongated, deep-valley reservoirs. Due to high nutrient inputs from their catchments, the reservoirs exhibited pronounced within-system gradients in primary productivity and water transparency. Although fish communities were similar among the reservoirs and dominated by few native species, the community structure and biomass systematically changed along the longitudinal axes of the reservoirs. The biomass and proportion of planktivores/benthivores in the fish community were highest at eutrophic sites near the river inflow and declined substantially towards deep, more oligotrophic sites close to the dam. The biomass and proportion of piscivores significantly increased downstream within the reservoirs alongside improving water quality. At species level, perch Perca fluviatilis and bream Abramis brama responded most sensitively, although in opposite directions, to the longitudinal environmental gradient. The major longitudinal changes in fish community characteristics were found to be consistent between pelagic and benthic habitats. The results of this study suggest that fish communities are appropriate indicators of eutrophication and can be used for ecological quality assessment of non-natural lentic water bodies, such as reservoirs. Moreover, our results underline the necessity to consider within-system gradients in water quality and the fish community when planning sampling programmes for deep-valley reservoirs.  相似文献   
8.
Manganese (Mn) is an essential element for humans, animals, and plants and is required for growth, development, and maintenance of health. Studies show that Mn metabolism is similar to that of iron, therefore, increased Mn levels in humans could interfere with the absorption of dietary iron leading to anemia. Also, excess exposure to Mn dust, leads to nervous system disorders similar to Parkinson's disease. Higher exposure to Mn is essentially related to industrial pollution. Thus, there is a benefit in developing a clean non-invasive technique for monitoring such increased levels of Mn in order to understand the risk of disease and development of appropriate treatments.To this end, the feasibility of Mn measurements with their minimum detection limits (MDL) has been reported earlier from the McMaster group. This work presents improvement to Mn assessment using an upgraded system and optimized times of irradiation and counting for induced gamma activity of Mn. The technique utilizes the high proton current Tandetron accelerator producing neutrons via the 7Li(p,n)7Be reaction at McMaster University and an array of nine NaI (Tl) detectors in a 4π geometry for delayed counting of gamma rays. The neutron irradiation of a set of phantoms was performed with protocols having different proton energy, current and time of irradiation. The improved MDLs estimated using the upgraded set up and constrained timings are reported as 0.67 μgMn/gCa for 2.3 MeV protons and 0.71 μgMn/gCa for 2.0 MeV protons. These are a factor of about 2.3 times better than previous measurements done at McMaster University using the in vivo set-up. Also, because of lower dose-equivalent and a relatively close MDL, the combination of: 2.0 MeV; 300 μA; 3 min protocol is recommended as compared to 2.3 MeV; 400 μA; 45 s protocol for further measurements of Mn in vivo.  相似文献   
9.
There are too many kinds of organisms to be able to study and manage each, yet the loss of a single species can sometimes unravel an ecosystem. Such `fusewire species'– critical in the same sense that an electrical fuse can cut out a whole circuit – would be a rewarding focus for research and management effort. However, this approach can only be effective if these `fusewires' represent but a small proportion of the number of species in the system.  

Aim


To demonstrate methods for measuring what proportion of the species in a system are critical to ecosystem function.  

Methods


The prevalence of fusewire species was measured in manipulative experiments on an aquatic microcosm.  

Results


No single genus deletion caused changes in key characteristics of the system.  

Main conclusions


Comparison of these results with other published studies shows that the proportion of critical fusewire species varies amongst different ecosystems. The oxidation pond microcosms were shown to contain no single species indispensable to system function. They appear to be ill-suited to a management strategy which focuses on priority eukaryote species. However, a single study provides no evidence that this result is general or even typical of other kinds of ecosystems; it is presented here as an empirical model. Other methods of investigation are available; they are less experimentally rigorous but more practical. These could provide important guidance in planning an approach to management in a particular ecosystem.  相似文献   
10.
For any element which is incorporated into biomass, the biogeochemical cycle of that element in a given ecosystem will be coupled to that of any other element similarly incorporated. The mutual interaction of two such cycles is examined using a simple model in which each cycle is constrained into four compartments. In each cycle the assimilation rate (primary productivity) is related in a non-linear fashion to the two nutrients and to biomass. The interactions are represented by combining a hyperbolic dependence for each nutrient (involving a "Michaelis constant") with a logistic equation governing the dependence of rate on biomass (involving a "carrying capacity"). The response of the model to perturbation (e.g. mobilization of an abiotic reserve) is strongly governed by the values assigned to these constants. The coupled cycles can exhibit positive feed-back with anomalous responses of the steady state and time-dependent solutions may exhibit complex oscillatory behaviour. Both the steady-state sensitivity and the kinetic behaviour of such coupled systems are simplified if the range of atomic ratios permitted by the assimilation process is restricted. It will therefore be of importance to determine under what conditions the assimilation rates for different elements are governed by mass-action effects (Liebig's Law) or by stoichiometric constraints (Redfield ratios).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号