首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2010年   1篇
  2007年   2篇
  2002年   1篇
  1985年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Indoxyl esters and glycosides are useful chromogenic substrates for detecting enzyme activities in histochemistry, biochemistry and bacteriology. The chemical reactions exploited in the laboratory are similar to those that generate indigoid dyes from indoxyl-beta-d-glucoside and isatans (in certain plants), indoxyl sulfate (in urine), and 6-bromo-2-S-methylindoxyl sulfate (in certain molluscs). Pairs of indoxyl molecules released from these precursors react rapidly with oxygen to yield insoluble blue indigo (or purple 6,6'-dibromoindigo) and smaller amounts of other indigoid dyes. Our understanding of indigogenic substrates was developed from studies of the hydrolysis of variously substituted indoxyl acetates for use in enzyme histochemistry. The smallest dye particles, with least diffusion from the sites of hydrolysis, are obtained from 5-bromo-, 5-bromo-6-chloro- and 5-bromo-4-chloroindoxyl acetates, especially the last of these three. Oxidation of the diffusible indoxyls to insoluble indigoid dyes must occur rapidly. This is achieved with atmospheric oxygen and an equimolar mixture of K(3)Fe(CN)(6) and K(4)Fe(CN)(6), which has a catalytic function. H(2)O(2) is a by-product of the oxidation of indoxyl by oxygen. In the absence of a catalyst, the indoxyl diffuses and is oxidized by H(2)O(2) (catalyzed by peroxidase-like proteins) in sites different from those of the esterase activity. The concentration of K(3)Fe(CN)(6)/K(4)Fe(CN)(6) in a histochemical medium should be as low as possible because this mixture inhibits some enzymes and also promotes parallel formation from the indoxyl of soluble yellow oxidation products. The identities and positions of halogen substituents in the indoxyl moiety of a substrate determine the color and the physical properties of the resulting indigoid dye. The principles of indigogenic histochemistry learned from the study of esterases are applicable to methods for localization of other enzymes, because all indoxyl substrates release the same type of chromogenic product. Substrates are commercially available for a wide range of carboxylic esterases, phosphatases, phosphodiesterases, aryl sulfatase and several glycosidases. Indigogenic methods for carboxylic esterases have low substrate specificity and are used in conjunction with specific inhibitors of different enzymes of the group. Indigogenic methods for acid and alkaline phosphatases, phosphodiesterases and aryl sulfatase generally have been unsatisfactory; other histochemical techniques are preferred for these enzymes. Indigogenic methods are widely used, however, for glycosidases. The technique for beta-galactosidase activity, using 5-bromo-4-chloroindoxyl-beta-galactoside (X-gal) is applied to microbial cultures, cell cultures and tissues that contain the reporter gene lac-z derived from E. coli. This bacterial enzyme has a higher pH optimum than the lysosomal beta-galactosidase of animal cells. In plants, the preferred reporter gene is gus, which encodes beta-glucuronidase activity and is also demonstrable by indigogenic histochemistry. Indoxyl substrates also are used to localize enzyme activities in non-indigogenic techniques. In indoxyl-azo methods, the released indoxyl couples with a diazonium salt to form an azo dye. In indoxyl-tetrazolium methods, the oxidizing agent is a tetrazolium salt, which is reduced by the indoxyl to an insoluble coloured formazan. Indoxyl-tetrazolium methods operate only at high pH; the method for alkaline phosphatase is used extensively to detect this enzyme as a label in immunohistochemistry and in Western blots. The insolubility of indigoid dyes in water limits the use of indigogenic substrates in biochemical assays for enzymes, but the intermediate indoxyl and leucoindigo compounds are strongly fluorescent, and this property is exploited in a variety of sensitive assays for hydrolases. The most commonly used substrates for this purpose are glycosides and carboxylic and phosphate esters of N-methylindoxyl. Indigogenic enzyme substrates are among many chromogenic reagents used to facilitate the identification of cultured bacteria. An indoxyl substrate must be transported into the organisms by a permease to detect intracellular enzymes, as in the blue/white test for recognizing E. coli colonies that do or do not express the lac-z gene. Secreted enzymes are detected by substrate-impregnated disks or strips applied to the surfaces of cultures. Such devices often include several reagents, including indigogenic substrates for esterases, glycosidases and DNAse.  相似文献   
2.
Renal impairment is associated with CNS dysfunctions and the accumulation of uremic toxins, such as indoxyl sulfate, in blood. To evaluate the relevance of indoxyl sulfate to CNS dysfunctions, we investigated the brain-to-blood transport of indoxyl sulfate at the blood-brain barrier (BBB) using the Brain Efflux Index method. [(3)H]Indoxyl sulfate undergoes efflux transport with an efflux transport rate of 1.08 x 10(-2)/min, and the process is saturable with a Km of 298 microm. This process is inhibited by para-aminohippuric acid, probenecid, benzylpenicillin, cimetidine and uremic toxinins, such as hippuric acid and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid. RT-PCR revealed that an OAT3 mRNA is expressed in conditionally immortalized rat brain capillary endothelial cell lines and rat brain capillary fraction. Xenopus oocytes expressing OAT3 were found to exhibit [(3)H]indoxyl sulfate uptake, which was significantly inhibited by neurotransmitter metabolites, such as homovanillic acid and 3-methoxy-4-hydroxymandelic acid, and by acyclovir, cefazolin, baclofen, 6-mercaptopurine, benzoic acid, and ketoprofen. These results suggest that OAT3 mediates the brain-to-blood transport of indoxyl sulfate, and is also involved in the efflux transport of neurotransmitter metabolites and drugs. Therefore, inhibition of the brain-to-blood transport involving OAT3 would occur in uremia and lead to the accumulation of neurotransmitter metabolites and drugs in the brain.  相似文献   
3.
The effect of the uremic solute indoxyl sulfate (IS) on scavenging superoxide anion radicals () generated from both the xanthine/xanthine oxidase (X/XO) system and activated neutrophils was investigated by electron paramagnetic resonance spectroscopy, combined with 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide (EMPO). The findings show that the presence of normal-physiological serum concentrations of IS (0.1-10 μM) resulted in decreased formation of EMPO-superoxide adduct without affecting XO activity. Furthermore, IS showed scavenging activity against cell-derived generated from activated neutrophils. In addition, IS also eliminated hydroxyl radicals. These findings suggest that IS acts as a novel endogenous antioxidant under normal-physiological conditions.  相似文献   
4.
The production of the blue dye indigo in plants has been assumed to be a possible route to the introduction of novel coloration into flowers or fibres. As the human cytochrome P450 mono-oxygenase 2A6 (CYP2A6) can form indigo in bacterial cultures, we investigated whether the expression of the corresponding cDNA in transgenic plants could lead to indigo formation. In a first attempt, we generated tobacco cell suspension cultures expressing the cDNA encoding human CYP2A6. Supplementation of the medium with indole led to the generation of indican (3-hydroxyindole-β- d -glucoside), a metabolite usually exclusively present in indigoferous dye plants. Hence, the recombinant CYP2A6 converted indole to the reactive metabolite 3-hydroxyindole (indoxyl), whereas rapid glucosylation is obviously conducted by ubiquitous plant glucosyl transferases (GTs). Interestingly, of nine additionally tested plant cell suspension cultures from various plant families, five were also capable of the formation of indican after indole supplementation, although this metabolism was more pronounced in transgenic tobacco cell suspension cultures expressing CYP2A6 cDNA. To evaluate whether indican or even indigo could be produced in whole plants, we generated transgenic tobacco plants harbouring active CYP2A6 together with an indole synthase (BX1) from maize. The genetically engineered tobacco plants accumulated indican, but did not develop a blue coloration. Although the de novo formation of indican in transgenic tobacco plants hampered indigo formation, it supports the contention that biosynthetic pathways can be efficiently mimicked by metabolic engineering.  相似文献   
5.
以6种广义虾脊兰属植物和2种树兰亚科植物为材料,利用液相色谱 串联三重四极杆质谱仪(LCMS QQQ)测定了冻伤处理前后花和叶片中靛苷、靛红、靛蓝和靛玉红4种吲哚基衍生物的含量,分析广义虾脊兰属植物吲哚基衍生物的生成及种属间含量的差异。结果显示:(1)4种吲哚基衍生物在所测定的6种广义虾脊兰属植物中均被检出,但在2种树兰亚科植物五唇兰和足茎毛兰中均未被发现。(2)在所测定的6种广义虾脊兰属植物花和叶片中,冻伤处理后的靛蓝、靛玉红和靛红含量均显著上升,而靛苷含量显著下降,同时花中的吲哚基衍生物含量均高于叶片。(3)6种广义虾脊兰属植物花和叶中吲哚基衍生物总含量以黄兰花最高,三褶虾脊兰叶最低。研究表明,冻伤处理引起靛苷向靛蓝的大量转化是导致冻伤后广义虾脊兰属植物组织中呈现出蓝色的主要原因,推测吲哚基衍生物可能也是一类与植物防御相关的化合物,在植物抵御逆境中扮演着重要的角色。  相似文献   
6.
Introduction: Increased plasma level of trimethylamine N-oxide (TMAO), a bacterial metabolite of choline, is associated with an increased cardiovascular risk. Indoxyl sulfate, a bacterial metabolite of tryptophan, is thought to be associated with higher mortality in cardiorenal syndrome. We hypothesized that enalapril, a well-established drug reducing cardiovascular mortality, may affect the plasma level of gut bacteria-derived metabolites and gut bacteria composition.

Materials and methods: 14–16-week-old Wistar rats were maintained either on water (controls) or water solution of enalapril for two weeks (5.3 or 12.6?mg/kg b.w.). Blood plasma and urine were analyzed for the concentration of TMAO and indoxyl sulfate using liquid chromatography coupled with triple-quadrupole mass spectrometry. Gut bacteria composition was analyzed with 16S rRNA gene sequence analysis.

Results: Rats treated with enalapril showed a significantly lower plasma TMAO level and a trend towards higher 24?h urine excretion of TMA and TMAO. Plasma indoxyl level was similar between the groups. There was no significant difference between the groups in gut bacteria composition.

Conclusions: Enalapril decreases rat plasma TMAO, but does not affect the plasma level of indoxyl sulfate and gut bacteria composition. The enalapril-induced decrease in plasma TMAO level may be of therapeutic and diagnostic importance.  相似文献   
7.
The function of aryl hydrocarbon receptor repressor (AHRR) in the kidney is unclear. The present study investigated associations between AHRR Pro189Ala polymorphism and estimated glomerular filtration rates (eGFR), serum creatinine, and hemoglobin levels in 2775 Japanese adults without diabetes. In addition, we examined whether AHRR expression levels in the kidney of control and chronic kidney disease (CKD) rats were changed. Multiple linear regression analyses showed that carriers of the Ala allele had increased eGFR and lower concentrations of serum creatinine and hemoglobin (p < 0.05). Immunohistochemical analysis showed that the expression of AHRR was upregulated in the kidneys of rats with CKD. These findings suggest that AHRR plays distinct roles in kidney functions and hemoglobin values. The effects of the AHRR polymorphism might be intensified in the kidneys of patients with CKD.  相似文献   
8.
Abstract Cell extracts of toluene-grown Pseudomonas putida produced a soluble yellow dye during aerobic incubations with indole and NADH. Accumulation of indoxyl in reaction mixtures corresponded with a linear increase in absorbance at 400 nm. The rate of increase in absorbance was shown to be a specific measure of toluene dioxygenase activity. The primary product of toluene oxidation, cis -toluene dihydrodiol, inhibited dioxygenase activity in cell extracts containing no detectable activity of cis -toluene dihydrodiol dehydrogenase.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号