首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1997年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
PSP94 is a potential biomarker for evaluating patients with prostate carcinoma. We have systematically studied the epitope structure of PSP94 by using a polyclonal antibody against human PSP94. Results of peptide mapping and ELISA tests of dose response to rabbit antiserum against human PSP94 protein showed that only the N-terminal peptides (N30 and M23) are immunoreactive while all the synthetic peptides (C28, C10) located closer to the C-terminus are completely devoid of antigenic activity with the polyclonal antibody. These results were confirmed by analysis of reciprocal competitive binding of PSP94 polyclonal antibody by the N-terminal peptides (N30 and M23) v. either recombinant GST-PSP94 fusion protein, purified recombinant PSP94, or natural PSP94 protein. To further delineate the antigenic activity of the N- and C-termini, we have also expressed N- and C-terminal half of the whole PSP94 (each 47 peptides) using the E. coli GST expression system. The recombinant N47/C47 peptides were released by thrombin cleavage from the GST fusion protein and characterized by Western blotting experiments. Dose response of the recombinant GST-PSP-N47 and -C47 peptides to PSP94 polyclonal antibody showed differential binding activities. Competitive binding of these recombinant N47/C47 proteins against the GST-PSP94 protein demonstrates that the polyclonal antibody has a higher affinity for the N47 peptide than the C47 peptide. Based on the immunological studies of both synthetic peptides and recombinant PSP94- N/C terminal proteins, we propose an epitope structure of human PSP94 with an immno-dominant N-terminus and an immuno-recessive C-terminus. J. Cell. Biochem. 65:172–185. © 1997 Wiley-Liss, Inc.  相似文献   
2.
PSP94 has shown potential to be a serum biomarker for evaluating prostate cancer. Studies of the epitope structure is crucial for this endeavour. In this article, we have used 15 different monoclonal antibodies (MAb) to analyse the epitope structure of PSP94 and to compare with the results obtained from our previous work using polyclonal antibody and recombinant PSP94. Firstly, we determined the relative activities of the 15 MAb population by direct and competitive ELISA. The two predominant MAbs (MAb PSP-6 and -19) in 15 MAbs were selected for further studies of the epitope structure. By comparing the binding activities of recombinant GST-PSP94 and natural PSP94 with MAbs, and by comparing their affinity with MAbs in an in vitro denaturing experiment, PSP94 was shown to have a similar, prevalently linear epitope structure as we demonstrated by polyclonal antibody. Using recombinant GST fusion protein with PSP94 and with each half of the N- and C-terminal 47 amino acids (GST-PSP-N47/C47) in E. coli cells, the different epitopes recognized by 15 monoclonal antibodies were delineated and the polar distribution of the epitope structure of PSP94 was characterized. Results of direct ELISA of recombinant N47 and C47 and their competitive binding against natural PSP94 (competitive ELISA) showed that the N- and C-termini represent the immuno-dominant and immuno-recessive area separately. A majority of the monoclonal antibodies (12/15) showed preferential binding of the N-terminal sequence of the PSP94 protein. Using GST-PSP-N47 as a standard protein, an epitope map of the 15 monoclonal antibodies was obtained. The results of this study will help to define the clinical utility of PSP94. J. Cell. Biochem. 65:186–197. © 1997 Wiley-Liss, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号