首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
《Free radical research》2013,47(2):82-88
Abstract

Endothelial dysfunction characterized by decreased nitric oxide (NO) bioavailability is the first stage of coronary artery disease. It is known that one of the factors associated with an increased risk of coronary artery disease is a high plasma level of uric acid. However, causative associations between hyperuricaemia and cardiovascular risk have not been definitely proved. In this work, we tested the effect of uric acid on endothelial NO bioavailability. Electrochemical measurement of NO production in acetylcholine-stimulated human umbilical endothelial cells (HUVECs) revealed that uric acid markedly decreases NO release. This finding was confirmed by organ bath experiments on mouse aortic segments. Uric acid dose-dependently reduced endothelium-dependent vasorelaxation. To reveal the mechanism of decreasing NO bioavailability we tested the effect of uric acid on reactive oxygen species production by HUVECs, on arginase activity, and on acetylcholine-induced endothelial NO synthase phosphorylation. It was found that uric acid increases arginase activity and reduces endothelial NO synthase phosphorylation. Interestingly, uric acid significantly increased intracellular superoxide formation. In conclusion, uric acid decreases NO bioavailability by means of multiple mechanisms. This finding supports the idea of a causal association between hyperuricaemia and cardiovascular risk.  相似文献   
2.
Long non-coding RNA (lncRNA) plays an important role in the renal inflammatory response caused by hyperuricaemia. However, the underlying molecular mechanisms through which lncRNA is involved in endothelial injury induced by hyperuricaemia remain unclear. In this study, we investigated the regulatory role of lncRNA-HOTAIR in high concentration of uric acid (HUA)–induced renal injury. We established hyperuricaemia mouse model and an in vitro uric acid (UA)–induced human umbilical vein endothelial cell (HUVEC) injury model. In HUA-treated HUVECs and hyperuricaemia mice, we observed increased HOTAIR and decreased miR-22 expression. The expression of pyroptosis-associated protein (NLRP3, Caspase-1, GSDMD-N, GSDMD-FL) was increased. The release of LDH, IL-1β and IL-18 in cell supernatants and the sera of model mice was also increased. The proliferation of HUVECs stimulated by HUA was significantly inhibited, and the number of TUNEL-positive cells in hyperuricaemia mouse kidney was increased. Bioinformatics analysis and luciferase reporter and RIP assays confirmed that HOTAIR promoted NLRP3 inflammasome activation by competitively binding miR-22. In gain- or loss-of-function experiments, we found that HOTAIR and NLRP3 overexpression or miR-22 knock down activated the NLRP3 inflammasome and promoted pyroptosis in HUA-treated HUVECs, while NLRP3 and HOTAIR knockdown or a miR-22 mimic exerted the opposite effects. Furthermore, in vivo experiments validated that HOTAIR knockdown alleviated renal inflammation in hyperuricaemia mice. In conclusion, we demonstrated that in hyperuricaemia, lncRNA-HOTAIR promotes endothelial cell pyroptosis by competitively binding miR-22 to regulate NLRP3 expression.  相似文献   
3.
Tumor lysis syndrome (TLS) is characterized by hyperuricaemia, hyperphosphatemia, hyperkalaemia, as well as hypocalcaemia due to the breakdown of tumor cells undergoing cancer therapy (chemo/radio). Therefore it is of interest to evaluate oxidative stress using selective biological markers [Malondialdehyde (MDA), Superoxide Dismutase (SOD), Glutathione (GSH) and Catalase (CAT)] in TLS. We report the marked differences (statistically significant with control) observed among a selected set of biomarkers of oxidative stress (MDA = 8.66±1.37; SOD = 0.15±0.11; GSH = 2.25±.77; CAT = 0.76±.57) in TLS patients in addition to other conventional biomarkers. Moreover, correlation was investigated among the parameters of oxidative stress and other circulating biomarkers of TLS. Data suggest the use of SOD, MDA, and GSH as potential diagnostic biomarker for TLS with other biomarkers.  相似文献   
4.
Multiterritorial atherosclerosis has dramatically increased annual risk of adverse cardiovascular events than atherosclerotic disease with single‐artery affected. Serum uric acid (SUA) is an important predictor of stroke and atherosclerosis; however, which is supported by few direct evidence based on cohort studies. A prospective cohort study including 2644 North Chinese adults aged ≥40 years was performed in 2010‐2012 to investigate the association between SUA and multiterritorial vascular stenosis. Hyperuricaemia was defined as SUA levels >6 and >7 mg/dL for males and females, respectively. All participants underwent twice transcranial Doppler (TCD) and bilateral carotid duplex ultrasound to evaluate intracranial artery stenosis (ICAS) and extracranial arterial stenosis (ECAS) and peripheral arterial disease (PAD) was determined by ankle‐brachial index (ABI) on January 2010 and January 2012 based on regular health check‐ups. The cumulative incidence of vascular stenosis was significantly higher in subjects with hyperuricaemia than in those without hyperuricaemia (54.1% vs. 34.7%, P < 0.001). The adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for new on‐set vascular stenosis due to hyperuricaemia and a 1‐mg/dL change in SUA level were 1.75 (1.32‐2.31) and 1.29 (1.21‐1.38), respectively. Furthermore, in the gender‐stratified analysis, the association between SUA levels and ICAS was statistically significant in males (OR: 2.02; 95% CI: 1.18‐3.46), but not females (OR: 0.85, 95% CI: 0.41‐1.76, P for interaction: 0.026).  相似文献   
5.
郑敏  麻骏武 《遗传》2016,38(4):300-313
痛风是由高尿酸血症引发的一种常见炎性关节炎,受遗传因素和环境因素共同作用。早期研究表明,PRPS1和HPRT1等单基因稀有突变会引起嘌呤合成代谢紊乱,从而引发高尿酸血症和痛风。近年来,全基因组关联分析(Genome-wide association studies,GWAS)已检出多个导致高尿酸血症和痛风的易感位点及相关候选基因。其中SLC2A9、SLC22A11和SLC22A12基因功能缺失性突变可引起遗传性低尿酸血症,而过表达则会加强尿酸的重吸收。ABCG2、SLC17A1和SLC17A3基因功能缺陷型变异会降低肾脏和肠道对尿酸的排泄量。因此,诱发尿酸排泄障碍(高重吸收和低排泄)的基因变异是影响高尿酸血症和痛风的主要遗传因素。另外,抑制-激活生长因子系统、转录因子、细胞骨架以及基因和环境的互作等因素也一定程度影响血液尿酸水平。在中国汉族人群中,两个新发现的易感基因RFX3和KCNQ1可能造成免疫应答受损和胰岛B细胞功能缺陷,从而直接或间接引起高尿酸酸血症和痛风。本文系统综述了高尿酸血症和痛风的遗传学研究,以促进人们对高尿酸血症和痛风发病机理的理解。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号