首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2014年   1篇
  2012年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
The well-known preference of the peptide bond for the trans conformation has been attributed to steric effects. Here, we show that a proline residue with an N-formyl group (H(i-1)-C'(i-1)=O(i-1)), in which H(i-1) presents less steric hindrance than does O(i-1), likewise prefers a trans conformation. Thus, the preference of the peptide bond for the trans conformation cannot be explained by steric effects alone. Rather, an n --> pi* interaction between the oxygen of the peptide bond (O(i-1)), and the subsequent carbonyl carbon in the polypeptide chain (C'(i)) also contributes to this preference. The O(i-1) and C'(i) distance and O(i-1).C'(i)=O(i) angle are especially favorable for such an n --> pi* interaction in a polyproline II helix. We propose that this electronic effect provides substantial stabilization to this and other elements of protein structure.  相似文献   
2.
The folding of proteins is directed by a variety of interactions, including hydrogen bonding, electrostatics, van der Waals' interactions, and the hydrophobic effect. We have argued previously that an n→π* interaction between carbonyl groups be added to this list. In an n→π* interaction, the lone pair (n) of one carbonyl oxygen overlaps with the π* antibonding orbital of another carbonyl group. The tendency of backbone carbonyl groups in proteins to engage in this interaction has consequences for the structures of folded proteins that we unveil herein. First, we employ density functional theory to demonstrate that the n→π* interaction causes the carbonyl carbon to deviate from planarity. Then, we detect this signature of the n→π* interaction in high‐resolution structures of proteins. Finally, we demonstrate through natural population analysis that the n→π* interaction causes polarization of the electron density in carbonyl groups and detect that polarization in the electron density map of cholesterol oxidase, further validating the existence of n→π* interactions. We conclude that the n→π* interaction is operative in folded proteins.  相似文献   
3.
Accurate ab initio coupled-cluster (CCSD) calculations have been used to evaluate systematically the E-E bond lengths, homonuclear dissociation energies, and force constants of a series of fluorine-substituted ethane homologues H3 − nFnE-EH3 − nFn (n=0-3), H3E-EF3, and H3E-EH2F (E=C, Si, Ge, Sn) in their staggered ethane-like conformations. The pronounced lack of correlation between bond lengths, dissociation energies, and force constants observed previously with E=Sn has also been found for the lighter group 14 homologues. However, each element in the group exhibits a different behavior. Attempts are made to interpret the findings in the context of electronegativity, hybridization defects, as well as negative and geminal hyperconjugation.  相似文献   
4.
The chromophore of fluorescent proteins, including the green fluorescent protein (GFP), contains a highly conjugated imidazolidinone ring. In many fluorescent proteins, the carbonyl group of the imidazolidinone ring engages in a hydrogen bond with the side chain of an arginine residue. Prior studies have indicated that such an electrophilic carbonyl group in a protein often accepts electron density from a main-chain oxygen. A survey of high-resolution structures of fluorescent proteins indicates that electron lone pairs of a main-chain oxygen-Thr62 in GFP-donate electron density into an antibonding orbital of the imidazolidinone carbonyl group. This n→π* electron delocalization prevents structural distortion during chromophore excitation that could otherwise lead to fluorescence quenching. In addition, this interaction is present in on-pathway intermediates leading to the chromophore, and thus could direct its biogenesis. Accordingly, this n→π* interaction merits inclusion in computational and photophysical analyses of the chromophore, and in speculations about the molecular evolution of fluorescent proteins.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号