首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Hyperammonaemia has deleterious effects on the CNS in patients with liver dysfunction. Cellular mechanisms underlying the effects of hyperammonaemia are largely unknown, although astrocytes have been the main target of interest. This study investigated how treatment with NH4Cl and lactate, which increase in the brain as a consequence of hyperammonaemia, affects cells in primary rat cultures enriched in either astrocytes or microglia. Morphological changes were studied over time using light microscopy. Release of the proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-6 and IL-1beta was measured using ELISA. NH4Cl was found to induce vacuole formation in both culture systems. Lactate treatment altered astrocytic appearance, resulting in increased space between individual cells. Microglia adopted a round morphology with either NH4Cl or lactate treatment. Lactate, but not NH4Cl, induced release of TNF-alpha and IL-6 in both astroglial- and microglial-enriched cultures, while IL-1beta was released only in microglial cultures. Cytokine release was higher in the microglial- than in the astroglial-enriched cultures. Additionally, the astroglial-enriched cultures containing approximately 10% microglial cells released more cytokines than cultures containing about 5% microglial cells. Taken together, our data suggest that most TNF-alpha, IL-6 and IL-1beta release comes from microglia. Thus, microglia could play an important role in the pathological process of hyperammonaemia.  相似文献   
2.
Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号