首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  2022年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2003年   2篇
  2002年   1篇
  1998年   2篇
  1994年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Subtilisin Carlsberg was covalently attached to five macroporous acrylic supports of varying aquaphilicity (a measure of hydrophilicity). Kinetic parameters of the transesterification of S and R enantiomers of secphenethyl alcohol with vinyl butyrate, catalyzed by various immobilized subtilisins, were determined in anhydrous dioxane and acetonitrile. Enzyme enantioselectivity in acetonitrile, but not in dioxane, correlated with the aquaphilicity of the support; a mechanistic rationale for this phenomenon was proposed. Although the catalytic activity of immobilized subtilisin in anhydrous solvents strongly depended on enzyme pretreatment, the enantioselectivity was essential conserved. (c) 1994 John Wiley & Sons, Inc.  相似文献   
2.
Thermolysin (Bacillus thermoproteolyticus neutral proteinase, EC 3.4.24.4) has been immobilized by radiation polymerization of hydrophilic and hydrophobic monomers, and its properties, such as enzyme activity, thermal stability and durability, have been studied. The activity of the immobilized enzymes increased with an increase in the hydrophilicity of the polymer matrix and with a decrease in monomer concentration. Immobilization with hydrophilic monomers increased the thermal stability of the enzymes, but the thermal stability of the enzymes immobilized with hydrophobic monomers was comparable with that of native enzymes. The durability of the immobilized enzymes was examined by continuous hydrolysis of casein; enzymes immobilized with a high concentration (90%) of hydrophilic monomers appeared to be stabilized and could be used for long times.  相似文献   
3.

The electrochemical polarization effect on early adsorption of Flavobacterium breve and Pseudomonas fluorescens P17 to platinum, titanium, stainless steel, copper, aluminum alloy and mild steel was studied. A well‐defined peak characterized the bacterial adsorption dependence on externally applied potential. Maximal adsorption occurred in the potential range of ‐0.5 to 0.5 V (SCE) for all tested metals. A shift of applied potential towards both a positive and a negative direction from the maximal adsorption potential (Emax,ad) was accompanied by a gradual decrease in bacterial adsorption. The extent of bacterial adsorption strongly depended on the nature of the metallic substratum and decreased accordingly as follows: platinum > titanium > stainless steel > aluminum alloy > carbon steel > copper. Adsorption on all tested metals was approximately two orders of magnitude higher with the relatively more hydrophobic F. breve compared to the less hydrophobic P. fluorescens P17. The effect of electrochemical polarization on the initial stages of bacterial adsorption onto metallic substrata is further discussed.  相似文献   
4.
In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at ?10 mA cm?2), unprecedented mass activities (>800 A g?1 at 100 mV overpotential), high turnover frequencies (6.96 H2 s?1 at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiency and promising stability on a 3D electrode.  相似文献   
5.
6.
7.

Background and Aims

Since the proposal of the cohesion theory there has been a paradox that the lumenal surface of vessels is rich in hydrophobic lignin, while tension in the rising sap requires adhesion to a hydrophilic surface. This study sought to characterize the strength of that adhesion in maize (Zea mays), the wettability of the vessel surface, and to reconcile this with its histochemical and physical nature.

Methods

Wettability was assessed by emptying the maize root vessels of sap, perfusing them with either water or oil, and examining the adhesion (as revealed by contact angles) of the two liquids to vessel walls by cryo-scanning electron microscopy. The phobicity of the lumenal surface was also assessed histochemically with hydrophilic and hydrophobic probes.

Key Results

Pit borders in the lumen-facing vessel wall surface were wetted by both sap/water and oil. The attraction for oil was weaker: water could replace oil but not vice versa. Pit apertures repelled oil and were strongly stained by hydrophilic probes. Pit chambers were probably hydrophilic. Oil never entered the pits. When vessels were emptied and cryo-fixed immediately, pit chambers facing away from the vessels were always sap-filled. Pit chambers facing vessel lumens were either sap- or gas-filled. Sap from adjoining tracheary elements entering empty vessels accumulated on the lumenal surface in hemispherical drops, which spread out with decreasing contact angles to fill the lumen.

Conclusions

The vessel lumenal surface has a dual nature, namely a mosaic of hydrophilic and hydrophobic patches at the micrometre scale, with hydrophilic predominating. A key role is shown, for the first time, of overarching borders of pits in determining the dual nature of the surface. In gas-filled (embolized) vessels they are hydrophobic. When wetted by sap (vessels refilling or full) they are hydrophilic. A hypothesis is proposed to explain the switch between the two states.  相似文献   
8.
Smart latexes for bioseparation   总被引:1,自引:0,他引:1  
Monodisperse, thermosensitive microspheres with sub-micron diameters are used for separation and collection of proteins and other biomolecules. The thermosensitivity gives the microspheres two valuable features. One is the controllability of affinity between microsphere and protein with temperature. The quality and quantity of proteins to be adsorbed on the microspheres can be controlled with temperature. The other feature is reversible control of dispersion stability. Microspheres which have adsorbed target proteins in the dispersion can be easily recovered by changing temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the presence of filamentous inclusions in nerve cells. These filaments are amyloid fibrils that are made of the protein α-synuclein, which is genetically linked to rare cases of PD and DLB. β-Synuclein, which shares 60% identity with α-synuclein, is not found in the inclusions. Furthermore, while recombinant α-synuclein readily assembles into amyloid fibrils, β-synuclein fails to do so. It has been suggested that this may be due to the lack in β-synuclein of a hydrophobic region that spans residues 73-83 of α-synuclein. Here, fibril assembly of recombinant human α-synuclein, α-synuclein deletion mutants, β-synuclein and β/α-synuclein chimeras was assayed quantitatively by thioflavin T fluorescence and semi-quantitatively by transmission electron microscopy. Deletion of residues 73-83 from α-synuclein did not abolish filament formation. Furthermore, a chimera of β-synuclein with α-synuclein(73-83) inserted was significantly less fibrillogenic than wild-type α-synuclein. These findings, together with results obtained using a number of recombinant synucleins, showed a correlation between fibrillogenesis and mean β-strand propensity, hydrophilicity and charge of the amino acid sequences. The combination of these simple physicochemical properties with a previously described calculation of β-strand contiguity allowed us to design mutations that changed the fibrillogenic propensity of α-synuclein in predictable ways.  相似文献   
10.
Treatment of polyethylene terephthalate fibres with hydrolase preparations from Thermomonospora (Thermobifida) fusca and Fusarium solani f. sp. pisi resulted in an increase of the hydrophilicity of the fibres determined by measurement of their dyeing behaviour with reactive dyes and their water absorption ability. Reflectance spectrometry of treated fibres dyed with a reactive dye showed that the colour became more intense corresponding to an increase of hydroxyl groups on the fibre surfaces and indicated a stepwise peeling of the fibres by the enzymes comparable to the effects obtained by alkaline treatments. The synthetic fibres treated with the hydrolase from T. fusca also showed enhanced water absorption ability further confirming the increased surface hydrophilicity caused by the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号