首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   20篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   9篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有95条查询结果,搜索用时 62 毫秒
1.
Rivers in northern Queensland are ephemeral and carry water mainly as a direct response to heavy rainfall. Sediment is transported downstream with the runoff and sediment deposition may be a major problem in many proposed reservoirs. Hence information about sediment transport, particularly under high flow conditions, is required for planning and design of water storage reservoirs. In this region, bed material samples can be obtained during low flow periods and suspended sediment sampling during floods is possible but only with difficulty. Little reliable data is available.This paper outlines a possible approach to predicting sediment loads in such rivers. Suspended sediment samples have been analysed to give both particulate concentrations and their grain size distributions. The latter have been compared with bed material size distributions, and the concentrations of suspended bed material and wash load components have been estimated.After investigations of a number of methods for predicting bed material transport, those which treat bed load and suspended load independently have been selected. Field data have been used to determine the wash load and the suspended bed material load. The bed load was then computed so that the total sediment load could be determined.This approach has been applied to the Flinders River at Glendower, based on field data obtained by the Queensland Water Resources Commission in 1982/83.  相似文献   
2.
The line-intersect technique was used to measure the loading of large woody debris in a 1.8 km reach of the Thomson River, Victoria (catchment area of 3540 km2). A debris census (measuring every item present) was done over 0.775 km of this reach. The transect technique over-estimated the actual loading revealed by the census. The loading of debris 0.01 m in diameter for the total 1.8 km reach was 0.0172 m3 m–2, which is higher than that measured in many headwater streams in other parts of the world. The volume loading of debris measured from low level aerial photographs was only 4.8% of the value estimated by the line-intersect technique. The line-intersect estimates were biased due to non-random orientation of debris in the stream (causing estimated errors of +8% for volume loading and +16% for surface area loading). It is recommended that to avoid this problem, when using the line-intersect transect technique in lowland rivers, each line should comprise at least two obliquely-angled transects across the channel. The mean item of debris (0.1 m in diameter) had a trunk basal diameter of 0.45 m, a length of 7.4 m, and volume of 0.7 m3. The riparian trees and the in-channel debris were of similar dimensions. The debris tended to be close to the bed and banks and was oriented downstream by the flow at a median angle of 27°. Because of this orientation, most debris had a small projected cross-sectional area, with the median value being only 1 m2. Thus, the blockage ratio (proportion of projected area of debris to channel cross-sectional area) was also low, ranging from 0.0002 to 0.1, with a median value of 0.004. The average item of debris, which occupied only 0.4% of the cross-section, would have minimal influence on banktop flow hydraulics, but the largest items, which occupied around 10%, could be significant. Judicious re-introduction of debris into previously cleared rivers is unlikely to result in a large loss of conveyance, or a detectable increase in flooding frequency.  相似文献   
3.
A total of 300 samples was collected from February 1985 to August 1986 in a medium order Ozark Mountain stream. Physical habitat measurements of temperature, mean water column velocity, depth, and substrate character were recorded for each of the 25 monthly samples along with length and sex of all individuals of Orconectes neglectus (Faxon). Analysis of habitat utilization and suitability (or preference) was conducted using exponential polynomial models of hydraulic stress models. There appeared to be equal preference for depth over the range measured. Both substrate and velocity preference curves were bimodal with each mode designating certain crayfish size classes. Young-of-the-year were found primarily in cobbled, high velocity areas while adults were found in low velocity, macrophyte beds. Utilization curves for laminar sublayer thichness also reflected size-dependent phenomena where young-of-the-year were found in thin sublayer areas and adults were found primarily in thick sublayers. When separated by time and size, adults were found to occupy higher velocity, cobbled habitats during at least two months. This time period corresponded with the time of egg-bearing and further analysis yielded a time-dependent habitat suitability surface which accounted for this movement pattern. We suggest that the application of these suitability surfaces, which reflect habitat changes during the annual life cycle, will produce more accurate predictions of density and will allow better habitat management decisions under various regulated flow scenarios.  相似文献   
4.
Tree growth is an indicator of tree vitality and its temporal variability is linked to species resilience to environmental changes. Second-order statistics that quantify the cross-scale temporal variability of ecophysiological time series (statistical memory) could provide novel insights into species resilience. Species with high statistical memory in their tree growth may be more affected by disturbances, resulting in lower overall resilience and higher vulnerability to environmental changes. Here, we assessed the statistical memory, as quantified with the decay in standard deviation with increasing time scale, in tree water use and growth of co-occurring European larch Larix decidua and Norway spruce Picea abies along an elevational gradient in the Swiss Alps using measurements of stem radius changes, sap flow and tree-ring widths. Local-scale interspecific differences between the two conifers were further explored at the European scale using data from the International Tree-Ring Data Bank. Across the analysed elevational gradient, tree water use showed steeper variability decay with increasing time scale than tree growth, with no significant interspecific differences, highlighting stronger statistical memory in tree growth processes. Moreover, Norway spruce displayed slower decay in growth variability with increasing time scale (higher statistical memory) than European larch; a pattern that was also consistent at the European scale. The higher statistical memory in tree growth of Norway spruce in comparison to European larch is indicative of lower resilience of the former in comparison to the latter, and could potentially explain the occurrence of European larch at higher elevations at the Alpine treeline. Single metrics of resilience cannot often summarize the multifaceted aspects of ecosystem functioning, thus, second-order statistics that quantify the strength of statistical memory in ecophysiological time series could complement existing resilience indicators, facilitating the assessment of how environmental changes impact forest growth trajectories and ecosystem services.  相似文献   
5.
Xylem vulnerability to embolism represents an important trait to determine species distribution patterns and drought resistance. However, estimating embolism resistance frequently requires time-consuming and ambiguous hydraulic lab measurements. Based on a recently developed pneumatic method, we present and test the “Pneumatron”, a device that generates high time-resolution and fully automated vulnerability curves. Embolism resistance is estimated by applying a partial vacuum to extract air from an excised xylem sample, while monitoring the pressure change over time. Although the amount of gas extracted is strongly correlated with the percentage loss of xylem conductivity, validation of the Pneumatron was performed by comparison with the optical method for Eucalyptus camaldulensis leaves. The Pneumatron improved the precision of the pneumatic method considerably, facilitating the detection of small differences in the (percentage of air discharged [PAD] < 0.47%). Hence, the Pneumatron can directly measure the 50% PAD without any fitting of vulnerability curves. PAD and embolism frequency based on the optical method were strongly correlated (r2 = 0.93) for E. camaldulensis. By providing an open source platform, the Pneumatron represents an easy, low-cost, and powerful tool for field measurements, which can significantly improve our understanding of plant–water relations and the mechanisms behind embolism.  相似文献   
6.
Abstract

From the measurements of the profiles of hydraulic conductance and water potential from soil through to the leaf system in fully established melon plants, the limits to water flow set by coupling of hydraulic conductance (k) with water relation parameters was evaluated in the laboratory using high pressure flow device (HPFM) and evaporative flux method (EF). The rootstock Arava was grafted onto self, and onto two genotypes (AR57 and AR82) using side and V graft types, and there was an ungrafted control. Hydraulic transport efficiency was estimated from measurements of evaporative flux (transpiration rate) and leaf water potential (ψL) measured between pre-dawn and sunset during the growth cycle. Measured parameters to characterize the hydraulic efficiency (architecture) of the vascular system of melon were normalized to areas of leaves and stem cross section; this enabled the examination of their physiological and ecological functions. The effects of rootstock genotype were more marked on graft union and scion water relations. Differences in the magnitudes of water relation parameters of hydraulic conductance, water potential (lwp) and evaporative water loss (EF) were detected. AR/RS82 side grafted exhibited high EF and Kh despite its lower leaf water potential compared to AR/RS57 V grafted. Self grafting (Arava/Arava grafts) in melon seems to improve water relations and xylem water transport efficiency. Parameters describing the hydraulic efficiency (architecture) of vascular system of melon plants were described in relation to plant attributes. The expression of hydraulic conductance of the root and shoot system relative to plant attributes did not eliminate differences in the magnitudes of conductance elements in tomato and melon. Differences obtained among the different melon grafts in whole plant leaf and stem area specific hydraulic conductance (Kl) indicate the carbon efficiency and hence the cost of resource allocation to areas of root surface and leaves. The role of plant water relations in root-shoot communications and whole plant regulation of water flux are inferred from this study.  相似文献   
7.
Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.  相似文献   
8.
Tropical forest responses are an important feedback on global change, but changes in forest composition with projected increases in CO2 and drought are highly uncertain. Here we determine shifts in the most competitive plant hydraulic strategy (the evolutionary stable strategy or ESS) from changes in CO2 and drought frequency and intensity. Hydraulic strategies were defined along a spectrum from drought avoidance to tolerance by physiology traits. Drought impacted competition more than CO2, with elevated CO2 reducing but not reversing drought‐induced shifts in the ESS towards more tolerant strategies. Trait plasticity and/or adaptation intensified these shifts by increasing the competitive ability of the drought tolerant relative to the avoidant strategies. These findings predict losses of drought avoidant evergreens from tropical forests under global change, and point to the importance of changes in precipitation during the dry season and constraints on plasticity and adaptation in xylem traits to forest responses.  相似文献   
9.
The genus Pinus has wide geographical range and includes species that are the most economically valued among forest trees worldwide. Pine needle length varies greatly among species, but the effects of needle length on anatomy, function, and coordination and trade‐offs among traits are poorly understood. We examined variation in leaf morphological, anatomical, mechanical, chemical, and physiological characteristics among five southern pine species: Pinus echinata, Pinus elliottii, Pinus palustris, Pinus taeda, and Pinus virginiana. We found that increasing needle length contributed to a trade‐off between the relative fractions of support versus photosynthetic tissue (mesophyll) across species. From the shortest (7 cm) to the longest (36 cm) needles, mechanical tissue fraction increased by 50%, whereas needle dry density decreased by 21%, revealing multiple adjustments to a greater need for mechanical support in longer needles. We also found a fourfold increase in leaf hydraulic conductance over the range of needle length across species, associated with weaker upward trends in stomatal conductance and photosynthetic capacity. Our results suggest that the leaf size strongly influences their anatomical traits, which, in turn, are reflected in leaf mechanical support and physiological capacity.  相似文献   
10.
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light‐saturated rates of photosynthesis, Amax) and water transport capacity (leaf hydraulic conductance, Kleaf). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near‐isogenic lines grown at two different irradiance levels. Kleaf, minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax, leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long‐term water‐use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号