首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   98篇
  国内免费   85篇
  2024年   7篇
  2023年   14篇
  2022年   23篇
  2021年   16篇
  2020年   37篇
  2019年   37篇
  2018年   28篇
  2017年   22篇
  2016年   28篇
  2015年   32篇
  2014年   37篇
  2013年   40篇
  2012年   26篇
  2011年   46篇
  2010年   20篇
  2009年   44篇
  2008年   35篇
  2007年   49篇
  2006年   47篇
  2005年   45篇
  2004年   34篇
  2003年   32篇
  2002年   31篇
  2001年   23篇
  2000年   29篇
  1999年   25篇
  1998年   18篇
  1997年   6篇
  1996年   21篇
  1995年   10篇
  1994年   10篇
  1993年   13篇
  1992年   14篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1958年   1篇
排序方式: 共有957条查询结果,搜索用时 312 毫秒
1.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
2.
3.
4.
Hydrogen peroxide permeation across large multilamellar vesicles of defined and complex lipid composition was shown to obey precise kinetic relationships for the activity of the occluded catalase. Careful assay conditions precluded simultaneous peroxidative damage to the lipids. The kinetic data was consistent with a barrier role for the bilayer for hydrogen peroxide permeation. More interestingly, hydrogen peroxide permeation across liposomes of complex lipid mixtures exhibited osmotic inhibition of permeation of hydrogen peroxide. On the other hand, purified egg lecithin vesicles did not exhibit any effect of external osmolality on hydrogen peroxide permeation in an experimentally defined non-lytic zone of external osmolarity. These results argue in favour of a heterogeneous, heteroporous structure of bilayers with complex lipid composition.  相似文献   
5.
Summary Sixty single seed descent (SSD) lines and about 25 anther-derived doubled-haploid (DH) lines were obtained from two triticale crosses. The frequency distributions of 10 quantitative agronomic traits were compared using parametric and non-parametric tests. A multivariate discriminant analysis was subsequently carried out. Gliadin patterns obtained from each line by polyacrylamide gel electrophoresis were used to calculate intra- and inter-population diversities from relative dissimilarity indices. It was found that DH and SSD lines show significant differences in frequency distributions of 1000 grain weight in both crosses, of heading date for one cross, and of lodging susceptibility for the other cross. The results of intra- and inter-population gliadin diversity indicate that although the SSD method theoretically provides more opportunity for recombination to occur than the DH method, it did not produce a greater range of recombinants. Since there is no significant difference between SSD- and DH-line distributions for grain yield, anther culture appears to be an efficient method for producing high yielding homozygous lines from F1 hybrids of triticale in a relatively short time.  相似文献   
6.
The gas exchange of 19 widely different warm climate species was observed at different leaf to air vapour pressure deficits (VPD). In all species stomata tended to close as VPD increased resulting in a decrease in net photosynthesis. The absolute reduction in leaf conductance per unit increase in VPD was greatest in those species which had a large leaf conductance at low VPDs. This would be expected even if stomata of all species were equally sensitive. However the percentage reduction in net photosynthesis (used as a measure of the relative sensitivity of stomata of the different species) was also closely related to the maximal conductance at low VPD. Similarily the relative sensitivity of stomata to changes in VPD was closely related to the weighted stomatal density or crowding index.The hypothesis is presented that stomatal closure at different VPDs is related to peristomatal evaporation coupled with a high resistance between the epidermis and the mesophyll and low resistance between the stomatal apparatus and the epidermal cells. This hypothesis is consistent with the greater relative sensitivity of stomata on leaves with a high crowding index.The results and the hypothesis are discussed in the light of selection, for optimal productivity under differing conditions of relative humidity and soil water availablility, by observation of stomatal density and distribution on the two sides of the leaf.Visiting scientist, plant physiologist and research assitant of the Cassava Program  相似文献   
7.
Verticillium lecanii (Fungi: Deuteromycete) blastospores were applied to a chrysanthemum crop by an ULV electrostatically charged rotary atomiser (APE-80). The deposition of spores and subsequent control ofAphis gossypii were compared to high volume hydraulic application. A full rate treatment (2×1013 blastospores per ha.) was applied by the APE-80 at week 1 and reduced spore rates of 1/6th and 1/12th applied by both the APE-80 and the hydraulic sprayer once and twice a week respectively for weeks 1 to 6. Untreated plots served as controls. Initial deposits of spores were higher with the electrostatic sprayer and better distributed with respect to the position of the target aphids. Significantly lower aphid populations were recorded on the electrostatically treated plots in week 4. The single full rate treatment had significantly fewer aphids than the untreated plots from week 3 and all treatments had significantly fewer aphids than the untreated plots from week 5 onwards. The proportion of the aphid population killed byV. lecanii was higher on the electrostatically treated plots until week 6.   相似文献   
8.
The Alu family of intersperesed repeats is comprised of ovr 500,000 members which may be divided into discrete subfamilies based upon mutations held in common between members. Distinct subfamilies of Alu sequences have amplified within the human genome in recent evolutionary history. Several individual Alu family members have amplified so recently in human evolution that they are variable as to presence and absence at specific loci within different human populations. Here, we report on the distribution of six polymorphic Alu insetions in a survey of 563 individuals from 14 human population groups across several continents. Our results indicate that these polymorphic Alu insertions probably have an African origin and that there is a much smaller amount of genetic variation between European populations than that found between other populations groups. Present address: Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Medical Center, 1901 Perdido St., New Orleans, LA 70112 Correspondence to: M.A. Batzer  相似文献   
9.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   
10.
The present study aims at characterizing plant water status under field conditions on a daily basis, in order to improve operational predictions of plant water stress. Ohm's law analog serves as a basis for establishing daily soil-plant relationships, using experimental data from a water-limited soybean crop: 227-1. The daily transpiration flux, T, is estimated from experimental evapotranspiration data and simulated soil evaporation values. The difference, 227-2, named the effective potential gradient, is derived from i) the midday leaf potential of the uppermost expanded leaves and ii) an effective soil potential accounting for soil potential profile and an effectiveness factor of roots competing for water uptake. This factor is experimentally estimated from field observation of roots. G is an apparent hydraulic conductance of water flow from the soil to the leaves. The value of the lower potential limit for water extraction, required to assess the effective soil potential, is calculated with respect to the plant using the predawn leaf potential. It is found to be equal to –1.2 MPa. It appears that over the range of soil and climatic conditions experienced, the daily effective potential gradient remains constant (1.2 MPa), implying that, on a daily basis, transpiration only depends on the hydraulic conductance. The authors explain this behaviour by diurnal variation of osmotic potential, relying on Morgan's theory (1984). Possible generalization of the results to other crop species is suggested, providing a framework for reasoning plant water behaviour at a daily time step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号