首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  国内免费   4篇
  2023年   1篇
  2021年   9篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   8篇
  2012年   1篇
  2011年   3篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1978年   2篇
  1974年   2篇
排序方式: 共有84条查询结果,搜索用时 296 毫秒
1.
GST activities against 1-Chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) were measured in isolated and cultured adult rat hepatocytes. Within 24 h in culture, both GST activities decreased to about 70% and either stabilized at this level (CDNB) or recovered (DCNB) to the initial level. Use of hyaluronidase in addition to collagenase during the isolation of the cells strongly reduced both activities and its stimulation by various drugs for up to 168 h. The hormones insulin, glucagon, triiodothyronine, estradiol, testosterone, and progesterone did not affect GST activity, while dexamethasone showed some interference. In the presence of dexamethasone the activity against CDNB was mainly stimulated by the combination of methylcholanthrene (MC) and phenobarbital (PB) to about 260% within 168 h. The activity against DCNB was stimulated predominantly by MC alone reaching 170% after 168 h. Quantification of the GST subunits Ya, Yb1 and Yp by an ELISA technique revealed a strong decrease of Ya, a transient increase of Yb1 after 24 h followed by a moderate decrease, and a stable low level of the transformation marker Yp during cultivation. The level of Ya was markedly induced by PB, particularly in combination with MC. The level of Yb1 was equally induced by MC or PB with no synergistic effect. Yp was not affected by these drugs. None of the hormones affected the level of these GST subunits. These results indicate that the physiological type of regulation of the GSTs is maintained during primary culture and no signs of dedifferentiation or transformation are observed. Furthermore, they demonstrate that the interaction of drugs and hormones and their inducing potential can be efficiently studied in the cultured hepatocytes.Abbreviations ABTS 2,2-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) - CDNB I-Chloro-2,4-dinitrobenzene - DCNB 1,2-dichloro-4-nitrobenzene; DEX, dexamethasone - DMSO dimethylsulfoxide - GST glutathione Stransferase - MC methylcholanthrene - N, NIC nicotinamide - -NF -naphthoflavone - PB phenobarbital - PBS phosphate buffered saline  相似文献   
2.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   
3.
The purpose of this study was to investigate the anti-hyaluronidase activities of honeys from different botanical origins honeys in order to determine their anti-inflammatory properties. The total phenolic contents, total flavonoids and total tannin levels of six types of honey, chestnut, oak, heather, pine, buckwheat and mixed blossom, were determined. Concentration-related inhibition values were tested turbidimetrically on bovine testis hyaluronidase (BTHase) as IC50 (mg/mL). All honeys exhibited various concentration-dependent degrees of inhibition against BTHase. Inhibition values varied significantly depending on honeys’ levels of phenolic contents, flavonoid and tannin. The honeys with the highest anti-hyaluronidase activity were oak, chestnut and heather. In conclusion, polyphenol-rich honeys have high anti-hyaluronidase activity, and these honeys have high protective and complementary potential against hyaluronidase-induced anti-inflammatory failures.  相似文献   
4.
透明质酸(HA)广泛应用于医学、化妆品、食品等领域。HA的生物活性取决于其分子量(M_w)。透明质酸寡糖由于具有重要的生理活性与特殊生理功能,在医药领域具有重要的应用前景。兽疫链球菌因其发酵周期短、生产强度较强的特点,在商业生产HA上具有广泛的应用。为了高效发酵合成透明质酸寡糖和解决发酵过程的溶氧问题,文中通过在兽疫链球菌WSH-24中过表达透明质酸合酶HasA以及优化表达水蛭来源的透明质酸酶LHAase。重组菌株摇瓶发酵24h,透明质酸寡糖积累至0.97g/L,比野生菌提高了182.0%。在3L发酵罐中发酵24 h,透明质酸寡糖生产强度为294.2 mg/(L·h),HA积累至7.06 g/L,比野生菌的罐上水平提高了112.4%。文中所构建的发酵合成透明质酸寡糖的兽疫链球菌重组菌株具有重要的应用前景。  相似文献   
5.
The major allergens of honeybee venom, hyaluronidase (Hyal) and phospholipase A2, can induce life-threatening IgE-mediated allergic reactions in humans. Although conventional immunotherapy is effective, up to 40% of patients develop allergic side effects including anaphylaxis and thus, there is a need for an improved immunotherapy. A murine monoclonal anti-Hyal IgG1 antibody (mAb 21E11), that competed for Hyal binding with IgEs from sera of bee venom allergic patients, was raised. The fragment of these IgG antibodies which bind to antigen (Fab) was produced and complexed (1:1) with Hyal. The crystal structure determination of Hyal/Fab 21E11 complex (2.6 A) enabled the identification of the Hyal-IgG interface which provides indirect information on the Hyal-IgE interaction (B-cell epitope). The epitope is composed of a linear array of nine residues (Arg138, His141-Arg148) located at the tip of a helix-turn-helix motive which protrudes away from the globular core and fits tightly into the deep surface pocket formed by the residues from the six complementarity determining regions (CDRs) of the Fab. The epitope is continuous and yet its conformation appears to be essential for Ab recognition, since the synthetic 15-mer peptide comprising the entire epitope (Arg138-Glu152) is neither recognized by mAb 21E11 nor by human IgEs. The structure of the complex provides the basis for the rational design of Hyal derivatives with reduced allergenic activity, which could be used in the development of safer allergen-specific immunotherapy.  相似文献   
6.
Hyaluronan (HA) turnover accelerates metastatic progression of prostate cancer in part by increasing rates of tumor cell proliferation and motility. To determine the mechanism, we overexpressed hyaluronidase 1 (Hyal1) as a fluorescent fusion protein and examined its impact on endocytosis and vesicular trafficking. Overexpression of Hyal1 led to increased rates of internalization of HA and the endocytic recycling marker transferrin. Live imaging of Hyal1, sucrose gradient centrifugation, and specific colocalization of Rab GTPases defined the subcellular distribution of Hyal1 as early and late endosomes, lysosomes, and recycling vesicles. Manipulation of vesicular trafficking by chemical inhibitors or with constitutively active and dominant negative Rab expression constructs caused atypical localization of Hyal1. Using the catalytically inactive point mutant Hyal1-E131Q, we found that enzymatic activity of Hyal1 was necessary for normal localization within the cell as Hyal1-E131Q was mainly detected within the endoplasmic reticulum. Expression of a HA-binding point mutant, Hyal1-Y202F, revealed that secretion of Hyal1 and concurrent reuptake from the extracellular space are critical for rapid HA internalization and cell proliferation. Overall, excess Hyal1 secretion accelerates endocytic vesicle trafficking in a substrate-dependent manner, promoting aggressive tumor cell behavior.  相似文献   
7.
Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.  相似文献   
8.
Jedrzejas MJ  Stern R 《Proteins》2005,61(2):227-238
Human hyaluronidases (Hyals) are a group of five endo-beta-acetyl-hexosaminidase enzymes, Hyal-1, -2, -3, -4, and PH-20, which degrade hyaluronan using a hydrolytic mechanism of action. Catalysis by these Hyals has been shown to follow a double-displacement scheme. This involves a single Glu residue within the enzyme, the only catalytic residue, as the proton donor (acid). Also involved is a carbonyl group of the hyaluronan (HA) N-acetyl-D-glucosamine as a unique type of nucleophile. Thus the substrate participates in the mechanism of action of its own catalysis. An oxocarbonium ion transition state is postulated, but there is no formation of a covalent enzyme-glycan intermediate, as found in most such reactions. The major domain is catalytic and has a distorted (beta/alpha)8 triose phosphate isomerase (TIM) barrel fold. The C-terminal domain is separated by a peptide linker. Each Hyal has a different C-terminal sequence and structure, the function of which is unknown. These unique C-termini may participate in the additional function(s) associated with these multifunctional enzymes.  相似文献   
9.
Hyaluronan (HA) has different biological functions according to its molar mass; short HA fragments are involved in inflammation processes and angiogenesis, whereas native HA is not. Physicochemically, studies of native HA hydrolysis catalyzed by bovine testicular hyaluronidase (HAase) have suggested that kinetic parameters depend on HA chain length. To study the influence of HA chain length in more detail, and to try to correlate the physicochemical and biological properties of HA, HA hydrolysis catalyzed by HAase was used in a new procedure to obtain HA fragments of different molar masses. HA fragments (10-mg scale) with a molar mass from 800 to 300,000 g mol(-1) were prepared, purified using low-pressure size exclusion chromatography (SEC), lyophilized, and characterized in molar mass by either mass spectrometry or HPLC-SEC-multiangle laser light scattering. The polydispersity index of the purified fractions was less than 1.25. The complete set of HA standards obtained was used to calibrate our routine HPLC-SEC device using only a refractive index (RI) detector. We showed that the N-acetyl-d-glucosamine reducing end assay and the calibrated HPLC-SEC-RI gave equivalent kinetic data. In addition, the HPLC-SEC-RI furnished the mass distribution of the polysaccharide during its hydrolysis.  相似文献   
10.
Hyaluronan (HA) has various biological functions that are strongly dependent on its chain length. In some cases, as in inflammation and angiogenesis, long and short chain-size HA effects are antagonistic. HA hydrolysis catalyzed by hyaluronidase (HAase) is believed to be involved in the control of the balance between longer and shorter HA chains. Our studies of native HA hydrolysis catalyzed by bovine testicular HAase have suggested that the kinetic parameters depend on the chain size. We thus used HA fragments with a molar mass ranging from 8x10(2) g mol(-1) to 2.5x10(5) g mol(-1) and native HA to study the influence of the chain length of HA on the kinetics of its HAase-catalyzed hydrolysis. The initial hydrolysis rate strongly varied with HA chain length. According to the Km and Vm/Km values, the ability of HA chains to form an efficient enzyme-substrate complex is maximum for HA molar masses ranging from 3x10(3) to 2x10(4) g mol(-1). Shorter HA chains seem to be too short to form a stable complex and longer HA chains encounter difficulties in forming a complex, probably because of steric hindrance. The hydrolysis Vm values strongly suggest that as the chain length decreases the HAase increasingly catalyses transglycosylation rather than hydrolysis. Finally, two HA chain populations, corresponding to HA chain molar masses lower and higher than approximately 2x10(4) g mol(-1), are identified and related to the bi-exponential character of the model we have previously proposed to fit the experimental points of the kinetic curves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号