首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   1篇
  2008年   11篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
1.
The geographical distribution, population structure and pollination ecology are key aspects in the conservation and management of rare orchids. Here, we address these aspects and the main threats affecting the endangered Cuban orchid Broughtonia cubensis. This rewardless orchid is self‐compatible, but pollinator dependent. However, seed production can be negatively affected by insect‐mediated selfing. Three species of small bee (genera Ceratina and Lasioglossum) act as pollinators. As in the case of other nectarless orchids, we detected two species of plant producing large amounts of nectar in the area, the floral morphology of which closely resembles that of B. cubensis. The simultaneous flowering of these species could positively affect the reproductive success of B. cubensis. Nonetheless, the fitness of this orchid in natural conditions is low, possibly related to strong pollen limitation. To the problems arising from reduced fitness is added the fact that its historical distribution range has been greatly reduced in recent years. Throughout this study, we have detected dramatic reductions in the population sizes, in some cases as a result of human plundering, but also as a consequence of hurricanes. Based on the results of this study, we propose some guidelines to manage and conserve this orchid. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 345–357.  相似文献   
2.
Rare species are important targets for biodiversity conservation efforts because rarity often equates to small populations and increased endangerment. Rare species are prone to stochastic extinction events and may be particularly susceptible to catastrophes. Therefore, understanding how rare species respond to disturbances is critical for evaluating extinction risk and guiding conservation managers. Population viability analyses (PVAs) are essential for assessing rare species' status yet they seldom consider catastrophic events. Accordingly, we present a PVA of a rare tropical epiphyte, Lepanthes caritensis (Orchidaceae), under simulated disturbance regimes to evaluate its demographics and extinction risk. We aimed to test how demographic models incorporating catastrophes affect population viability estimates. Our goal was to better guide management of these orchids and other rare plants. Results revealed L. caritensis numbers have declined recently, but projected growth rates indicated that most subpopulations should increase in size if undisturbed. Still, projection models show that moderate catastrophes reduce growth rates, increase stochasticity in subpopulation sizes, and elevate extinction risk. Severe catastrophes had a more pronounced effect in simulations; growth rates fell below replacement level, there was greater variation in projected population sizes, and extinction risk was significantly higher. PVAs incorporating periodic catastrophes indicate that rare species may have greater extinction probabilities than standard models suggest. Thus, precautionary conservation measures should be taken in disturbance prone settings and we encourage careful monitoring after environmental catastrophes. Future rare plant PVAs should incorporate catastrophes and aim to determine if rescue and reintroduction efforts are necessary after disturbances to insure long-term population viability.  相似文献   
3.
The opportunity to study the effects of a powerful hurricane on monkey populations, diet, and behavior via pre- and post-hurricane data was presented when hurricane Iris virtually destroyed the forest along Monkey River in southern Belize on October 8, 2001, including a 52-ha area where black howlers have been subjects since 1999. Before the hurricane, 8 social groups, averaging 6.37 members, had been stable in both group composition and range for q 2 years. The hurricane, which levelled much of the forest, resulted in the complete loss of the forest canopy. The trees that remained standing lost most or all branches and were 100% defoliated. The monkey population in the study area was reduced by 42% and survivers experienced a period of extended social disorganization involving transient individuals, high numbers of solitary monkeys, and small fragmentary social groups. The period of disorganization lasted 12 weeks, after which the number of solitaries reduced and stability of the large groups increased. Within the study area, 5 social groups have been more or less stable since ca. week 15; however, home ranges had yet to stabilize at week 35. The social and ranging effects are similar to what has been described for translocated primates. Post-hurricane diet was limited to fruit and leaves remaining in the deadfall for the first 2 weeks and to new leaves and leaf buds for many weeks after that. Normal fruit consumption in April and May was prevented by the failure of surviving trees to produce fruit. With the loss of forest canopy there has been increased use of low foliage and ground travel, and with the reduction in population density there has been a reduction in vocalization frequency.  相似文献   
4.
The structure and dynamics of cyclone‐prone tropical forests are driven in part by variation in tree species resistance to and survival after wind‐induced structural damage. We determined the factors associated with tree damage and 3‐yr survival following Category 5 Cyclone Olaf on the Polynesian island of Ta'u, American Samoa. Despite sustaining a high rate of severe damage (34.6% of all trees snapped, 23.0% uprooted), system resilience was high with 74.3 percent stem survival overall and an annual mortality rate of 7.9 percent compared with 2.1 percent in nearby undisturbed late successional forest. Three‐yr survival rate of trees sustaining severe damage was 63.1 percent, compared to about 89 percent for trees sustaining only branch loss or defoliation. Three‐yr survival differed according to damage type, 78.5 percent after snapping vs. 38.4 percent after uprooting. Species differed widely in resistance to and survival after snapping and uprooting. Several species and individual traits were associated with the probability of snapping or uprooting; however, wood density was the only species trait consistently, and negatively, associated with the probability of sustaining either damage type. Survival after snapping was negatively associated with the proportion of the tree snapped off, which was determined by individual tree architecture. Species growth rate was negatively associated with survival after uprooting, indicating the importance of shade tolerance for survival after uprooting. Thus, whereas species traits seemed to exclusively underpin resistance to and survival after uprooting, they only partly accounted for snapping resistance, and did not determine the intensity of snap damage or survival after snapping. Our results highlight the importance of considering each damage type separately when considering ecological trade‐offs.  相似文献   
5.
6.
7.
Cyclones, which change tree communities and alter forest structure, are thought to have had a significant selective pressure on the flora and fauna of Madagascar. Very little information, however, is available on the actual impact of cyclones on Malagasy ecosystems. On 21 January 2009, Cyclone Fanele made landfall on the western coast of Madagascar with sustained winds of 185 km/h. We examined the immediate effects of the cyclone on tropical dry forest structure in the Kirindy Mitea National Park. In July and August 2009, we measured the height, diameter at breast height (dbh), and damage for 1361 trees in nine 25 × 25 m plots. We found that: (1) over 95 percent of trees experienced some sort of damage, including 8.8 percent mortality; (2) understory and emergent trees experienced significantly higher mortality than canopy trees; and (3) stem density was reduced 9.2±4.5 percent and biomass was reduced 13.4±8.1 percent after the cyclone. Dbh was the best predictor of trunk damage and mortality. This extensive alteration of forest structure will have a substantial short‐ and long‐term impact on the biotic communities of western Madagascar.  相似文献   
8.
Radiative forcing of natural forest disturbances   总被引:1,自引:0,他引:1  
Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate‐regulating properties of forests. Using both tower‐based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane‐damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models.  相似文献   
9.
Aims: Large hurricanes have profound impacts on temperate forests,but owing to their infrequent nature these effects have rarelybeen examined in detail. In 1996, Hurricane Fran significantlydamaged many long-term tree census plots in the Duke Foreston the North Carolina Piedmont, thereby providing an exceptionalopportunity to examine pre- and post-hurricane forest compositionaltrajectories. Our goal was to examine immediate, short-term(0–4 years) and longer term (5 year) hurricane-inducedstructural, spatial and compositional changes in the tree population(stem d.b.h > 1 cm) in the context of our detailed, long-termknowledge of the dynamics of these forests. Methods: We surveyed stem damage and tree mortality in 34 long-term permanentplots (ca. 70-year record; 404–1 012 m2) and 7 large mappedtree stands (ca. 20-year record; 5 250–65 000 m2) representingboth transition-phase, even-aged pine stands and uneven-agedupland hardwood forests. We employed three types of damage measuresto quantify stand-level damage severity: percentage of stemsdamaged, percentage of basal area lost and a ‘stand-leveldamage index’. Second-order spatial analysis (Ripley'sK-function) was used to investigate patterns in tree mortality. Important findings: Our study found hurricane effects on the structural attributesof Piedmont forests to be variable and patchy. Changes in treespecies composition, however, were modest. Uprooting was themajor damage type for the overstory trees [diameter at breastheight (d.b.h.) >10 cm] apparently due to the exposure ofthe crowns to high wind combined with heavy rainfall prior toand during the storm. Saplings, juvenile trees and small trees(1–10 cm d.b.h.) of the understory and midstory were mainlydamaged by being pinned or bent by their damaged large neighbors.Hurricane-induced tree mortality varied weakly among species,was positively correlated with pre-hurricane tree size and remainedup to 2-fold higher than pre-hurricane background mortality5 years after the hurricane. Spatial point pattern analysisrevealed a patchy distribution of tree mortality during thehurricane sampling interval. Hurricane Fran resulted in a dramaticincrease in average gap size from ca. 400 m2 pre-hurricane toca 1100 m2 after the hurricane, whereas maximum gap sizes reached18–34 times larger than the pre-hurricane levels.  相似文献   
10.
Recent debate on whether or not mahogany ( Swietenia macrophylla King) is threatened by the international timber trade has focused on the breadth of its range and estimates of the remaining stock of mahogany trees. These data are inadequate to reveal the status of mahogany populations, both because they are incomplete in areal extent and because they do not reveal population parameters such as the existence or density of young trees smaller than commercial size. However, there is sufficient information on the regeneration ecology of mahogany to indicate that under natural conditions this species regenerates in essentially even-aged stands after catastrophic disturbances destroy many or most trees, and, in the case of fires and flooding, saplings and seedlings as well. Adult mahoganies tend to survive these events, and regenerate by shedding seed onto the resulting gaps or clearings. This ecological strategy makes mahogany vulnerable to logging, first because juvenile mahoganies are not found in the understorey, and secondly because logging operations shortcircuit mahogany regeneration processes by selectively removing almost all mahogany seed sources while leaving standing competing vegetation of other species. Listing of mahogany in CITES Appendix II could provide both a mechanism to fill in gaps in information and an incentive to change current practices in favour of silvicultural management to provide for regeneration of this valuable timber species in forests subjected to logging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号