首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
  国内免费   23篇
  2024年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有85条查询结果,搜索用时 281 毫秒
1.
Abstract. Successional processes within northern Swedish boreal forest are investigated for the last 2000 years by analysis of pollen, charcoal fragments and insect remains preserved in a deep mor humus layer on a small island in a large lake. Frequent disturbances by fire, blow-down, insect attack and flood have been the chief influence on vegetation dynamics. The gradual climatically induced replacement of Betula pubescens by Picea abies is superimposed on the disturbance dynamics. Picea first became established during the Little Ice Age, which was the longest period without fire in the record. A thin layer of volcanic ash from Iceland confirms the chronology at the onset of the Little Ice Age. The present importance of Pinus sylvestris and Ericaceae on the island is a product of a recent increase in disturbance frequency. The disturbance regime ensures that the communities stay in equilibrium with prevailing climate.  相似文献   
2.
Dag O. Hessen 《Hydrobiologia》1992,229(1):115-123
Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity. The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.  相似文献   
3.
Chemical, spectroscopic (IR and NMR), and molecular characteristics of humus extracted from urban waste before and after compositing are reported. The main differences are in the contents of acidic groups and straight aliphatic chains which diminish in the composted material. In comparing humus characteristics of composted urban waste and soils, the only real difference was found in the elution curves on Sephadex G-100, where the ratio of 100,000 and 1,300 peaks was higher in the compost than in the soil curve. The finding suggests that this ratio is a parameter that could enable us, even if in a semiquantitative manner, to follow the humification process of the compost when its addition to the soil is not less than the autochthonous organic matter content.Research work supported by CNR, Italy, Special grant I.P.R.A.-Sub-project 1. Paper N. 1531.  相似文献   
4.
5.
Summary

The hyphomycete spora of the River Kelvin and its tributary, the Allander Water, was sampled during October 1986 to January 1987. Twenty spore types were found, the commonest being Flagellospora curvula and Lemonniera aquatica. Spore numbers were high in October and declined during the autumn to an undetectable level by the end of December, but leaves collected in December and January yielded spores on incubation in water.  相似文献   
6.
We studied the potential of the humus layer of the Norway spruce stands to supply beneficial rhizobacteria to birch (Betula pendula), alder (Alnus incana) and fescue grass (Festuca rubra), representatives of pioneer vegetation after clear-cutting of the coniferous forest. Axenically grown seedlings of these species were inoculated with the acid spruce humus, pH 3.7-5.3. Actinorhizal propagules, capable of nodulating alder, were present in high density (10(3) g(-1)) in humus of long-term limed plots, whereas plots with nitrogen fertilization contained almost none (humus were Bacillus, Paenibacillus, Arthrobacter, Nocardia, Rhodococcus and Pseudomonas, independently of prior liming or fertilization of the plots. The taxa found in the seedling roots differed from that in humus by the prevalence of the Gram-negative genera Pseudomonas, Alcaligenes and Comamonas. Enrichment cultures of the roots on nitrogen-free media yielded Paenibacillus and Rhodococcus species. Nitrogen-fixing R. erythropolis and a novel Paenibacillus, closest by full sequence of 16S rDNA to P. durus, represented new classes of nitrogen-fixing rhizosphere bacteria. In addition, nitrogen-fixing R. fascians was found in the humus. The rhizoflora and humus contained high proportions of bacteria antagonistic towards plant pathogenic Rhizoctonia sp., Botrytis cinerea and Fusarium culmorum. The antagonistic isolates also commonly produced siderophores and/or cell wall degrading enzymes.  相似文献   
7.
Microbial fuel cell (MFC) technology has shown great potential for harvesting energy from waste organic materials. Here, we explored the potential of MFC‐based electricity generation from forest detritus, a large untapped biomass pool. Electricity generation from in situ MFCs and relevant environmental parameters (i.e., carbon sources and concentrations, temperature, water depth) in a seasonally flooded freshwater cypress‐tupelo wetland were monitored intensively for two flooding periods. Current outputs ranged from 0 to 1.27 mA (mean of 0.40 mA for flooding period) and were highly sensitive to environmental changes, showing seasonal and diel dependences. Excluding the influence of heavy storms, drought, or wetland icing, current output was highly temperature‐dependent dielly. Seasonally, current output gradually increased in the first 3–4 months (limited by temperature) and decreased slightly during the last 1–2 months (probably limited by carbon and nutrients) of both flooding periods. Litter extract of baldcypress (Taxodium distictum) with lower C/N ratio and aromatic content showed greater stable current outputs (0.57 mA) based on 50 mg l?1 biological oxygen demand compared to extracts of water tupelo (Nyssa aquatica) and longleaf pine (Pinus palustris), suggesting that the current output of in situ MFCs could depend on the vegetation within a wetland. Our study highlights the potential application of MFC in generating green and sustainable electricity from forest biomass for powering remote sensors in wetland ecosystems.  相似文献   
8.
In this study, two plots in a secondary and another two in planted Pinus densiflora stands were exposed to different forest treatments, and the ectomycorrhizal (EM) biomass and its ergosterol content was measured for a year. The unmanaged plot in the secondary stand had greater EM biomass than those in any other plots. Whereas understory cutting had less effect on EM biomass, litter and humus removal decreased pine EM biomass and its ergosterol content, suggesting that such forest treatment alters EM biomass and its structure.  相似文献   
9.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   
10.
Litter quality in a north European transect versus carbon storage potential   总被引:8,自引:0,他引:8  
Berg  Björn  Meentemeyer  Vernon 《Plant and Soil》2002,242(1):83-92
Newly shed foliar plant litter often has a decomposition rate of ca 0.1–0.2% day–1, which decreases greatly with time and may reach 0.0001 to 0.00001% day–1 or lower in litter material in the last stages of decay. The decrease in decomposability (substrate quality) varies among species and is complex, involving both direct chemical changes in the substrate itself and the succession in microorganisms able to compete for substrate with a given chemical composition. In late stages, the decomposition appears very little affected by climate, suggesting that climate change will have little effect on late-stages decomposition rates. Here, we apply a model for the late stages of litter decomposition to address the question of climate-change effects on soil-C storage. Decomposition of litter turning into soil organic matter (SOM) is determined by the degradation rate of lignin. In the last phases of decay, raised N concentrations have a rate-retarding effect on lignin degradation and thus on the decomposition of far-decomposed litter and litter in near-humus stages. The retardation of the decomposition rate in late stages may be so strong that decomposition reaches a limit value at which total mass losses virtually stop. At such a stage the remaining litter would be close to that of stabilized SOM. The estimated limit values for different species range from about 45 to 100% decomposition indicating that between 0 and 55% should either be stabilized or decompose extremely slowly. For no less than 106 long-term studies on litter decomposition, encompassing 21 litter types, limit values were significantly and negatively related to N concentration, meaning that the higher the N concentration in the newly shed litter (the lower the C/N ratio) the more litter was left when it reached its limit value. Trees growing under warmer and wetter climates (higher actual evapotranspiration, AET) tend to shed foliar litter more rich in N than those growing under colder and drier climates. A change in climate resulting in higher AET would thus mean that within species, e.g., Scots pine, a higher N level in the foliar litter may result. Further, within the boreal system deciduous species appear to have foliar litter richer in N than have conifers and within the conifers group, Norway spruce has needle litter more rich in N than, e.g., Scots pine. Thus, a change of species (e.g., by planting) from pine to spruce or from spruce to a deciduous species such as birch may result in a higher N level in the litter fall at a given site. In both cases the result would be a lower limit value for decomposition. The paper presents an hypothesis, largely based on available data that a change in climate of 4° higher annual average temperature and 40% higher precipitation in the Baltic basin would result in higher N levels in litter, lower decomposition and thus a considerable increase in humus accumulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号