首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   4篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1993年   1篇
  1985年   1篇
排序方式: 共有16条查询结果,搜索用时 484 毫秒
1.
THE TIMING OF DIVISION IN CHLAMYDOMONAS   总被引:3,自引:2,他引:1  
  相似文献   
2.
Fast swimming pelagic cetacean species have osteological characteristics that promote a more stable spine in comparison to that of coastal species. The Peale's dolphin (Lagenorhynchus australis) and the hourglass dolphin (Lagenorhynchus cruciger) have a close phylogenetic relationship and are found in coastal and pelagic waters in the Southern Hemisphere, respectively. The aim of this work was to study the relationship between the vertebral column's morphology and its flexibility, across these species of contrasting habitats. Vertebral counts and multiple measurements of each vertebra were used to infer intervertebral flexibility. Bivariate plots and discriminant multivariate analyses were employed to compare each functional region along the vertebral column. Both species displayed a regionalization of the column into three stable regions and two flexible areas, which statistically differ in the proportion of the skeleton occupied in each species. While the Peale's dolphin has rounder vertebrae, associated with higher flexibility, the hourglass dolphin has disk‐shaped vertebrae and strongly inclined processes related to high stability. Although the species are closely related phylogenetically, vertebral morphology is influenced by a diverse set of ecological and behavioral factors, reflecting a high degree of vertebral plasticity within the genus.  相似文献   
3.
The mature larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae) enters facultative diapause in response to short‐day conditions in the autumn (August–September). Diapause induction and photoperiodic clock mechanism were investigated in C. suppressalis larvae reared on an artificial diet in the present study. The critical night length for diapause induction was about 9 h 53 min to 10 h 39 min at 22 to 28°C. The third‐instar larvae were found to be relatively sensitive to diapause induction. Photoperiodic response under non‐24‐h light–dark cycles showed that scotophase length played an essential role in the induction of larval diapause in C. suppressalis, and consecutive exposure to long‐night cycles was necessary for a high diapause incidence. In the Nanda–Hamner experiment, diapause incidence peaked at scotophase of 12 h and dropped rapidly at scotophases > 24 h. In the Bünsow experiment, diapause incidence was clearly suppressed, especially at the light pulse located 8 h in the scotophase. Both the Nanda–Hamner and Bünsow experiments showed no rhythmic fluctuations with a period of about 24 h; thus the photoperiodic clock in C. suppressalis is a non‐oscillatory hourglass timer or a rapidly damping circadian oscillator.  相似文献   
4.
5.

Background and Aims

Hourglass cells (HGCs) are prominent cells in the soybean seed coat, and have potential use as ‘phytofactories’ to produce specific proteins of interest. Previous studies have shown that HGCs initiate differentiation at about 9 d post-anthesis (dpa), assuming their characteristic morphology by 18 dpa. This study aims to document the structural changes in HGCs during this critical period, and to relate these changes to the concurrent development of a specific soybean peroxidase (SBP) encoded by the Ep gene.

Methods

Pods were collected from plants at specific growth stages. Fresh material was processed for analysis of Ep peroxidase activity. Tissues were processed for scanning and transmission electron microscopy, as well as extracted for western blotting. A null variety lacking expression of Ep peroxidase was grown as a control.

Key Results and Conclusions

At 9 dpa, HGCs are typical undifferentiated plant cells, but from 12–18 dpa they undergo rapid changes in their internal and external structure. By 18 dpa, they have assumed the characteristic hourglass shape with thick cell walls, intercellular air spaces and large central vacuoles. By 45 dpa, all organelles in HGCs have been degraded. Additional observations indicate that plasmodesmata connect all cell types. SBP activity and SBP protein are detectable in the HGC before they are fully differentiated (approx. 18 dpa). In very early stages, SBP activity appears localized in a vacuole as previously predicted. These results increase our understanding of the structure and development of the HGC and will be valuable for future studies aimed at protein targeting to components of the HGC endomembrane systems.  相似文献   
6.
Abstract

Resonance experiments (Nanda‐Hamner protocol) conducted at two temperatures for diapause termination in Pimpla instigator (Hymenoptera: Ichneumonidae) do not support the view that the photoperiodic clock has an oscillatory component, but suggest the presence of a non‐rhythmic timer or hourglass mechanism. These results are best explained by a two hourglasses model, one of which starts at light‐on and measures the photophase and the other is initiated by light‐off and measures the scotophase. The most likely hypothesis is that the ratio of photophase to scotophase lengths is the determining element. Good agreement is obtained between results predicted by two hourglasses model and results observed in Pimpla. The diurnal hourglass continues to run for long time (several months) in constant condition (LL) and does not require to be ‘turned over’ by D/L transition, in contrary to the classical model of hourglass which executes a single act of time measurement in extented phase and then stops. The most simple explanation is that some essential factor of diapause termination is synthesized during photophase and degraded during scotophase. Therefore an independent photoperiodic counter (for sommation of daily informations) is not necessary. The two hourglasses system serves as photoperiodic clock and accumulation of product as counter.  相似文献   
7.
8.
Background The remarkable similarity of animal embryos at particular stages of development led to the proposal of a developmental hourglass. In this model, early events in development are less conserved across species but lead to a highly conserved ‘phylotypic period’. Beyond this stage, the model suggests that development once again becomes less conserved, leading to the diversity of forms. Recent comparative studies of gene expression in animal groups have provided strong support for the hourglass model. How and why might such an hourglass pattern be generated? More importantly, how might early acting events in development evolve while still maintaining a later conserved stage?Scope The discovery that an hourglass pattern may also exist in the embryogenesis of plants provides comparative data that may help us explain this phenomenon. Whether the developmental hourglass occurs in plants, and what this means for our understanding of embryogenesis in plants and animals is discussed. Models by which conserved early-acting genes might change their functional role in the evolution of gene networks, how networks buffer these changes, and how that might constrain, or confer diversity, of the body plan are also discused.Conclusions Evidence of a morphological and molecular hourglass in plant and animal embryogenesis suggests convergent evolution. This convergence is likely due to developmental constraints imposed upon embryogenesis by the need to produce a viable embryo with an established body plan, controlled by the architecture of the underlying gene regulatory networks. As the body plan is largely laid down during the middle phases of embryo development in plants and animals, then it is perhaps not surprising this stage represents the narrow waist of the hourglass where the gene regulatory networks are the oldest and most robust and integrated, limiting species diversity and constraining morphological space.  相似文献   
9.
Demuth JP  Wade MJ 《Genetica》2007,129(1):37-43
Population genetic theory predicts that maternal effect genes will evolve differently than genes expressed in both sexes because selection is only half as effective on autosomal genes expressed in one sex but not the other. Here, we use sequences of the tandem gene duplicates, bicoid (bcd) and zerknüllt (zen), to test the prediction that, with similar coefficients of purifying selection, a maternal effect gene evolves more rapidly than a zygotic gene because of this reduction in selective constraint. We find that the maternal effect gene, bcd, is evolving more rapidly than zygotically expressed, zen, providing the first direct confirmation of this prediction of maternal effect theory from molecular evidence. Our results extend current explanations for the accelerated rate of bcd evolution by providing an evolutionary mechanism, relaxed selective constraint, that allows bcd the evolutionary flexibility to escape the typical functional constraints of early developmental genes. We discuss general implications of our findings for the role of maternal effect genes in early developmental patterning.  相似文献   
10.
The water channel protein aquaporin-1 (AQP1) has two asparagine-proline-alanine (NPA) repeats on loops B and E. From recent structural information, these loops are on opposite sides of the membrane and meet to form a pore. We replaced the mercury-sensitive residue cysteine 189 in AQP1 by serine to obtain a mercury-insensitive template (C189S). Subsequently, we substituted three consecutive cysteines for residues 71-73 near the first NPA repeat (76-78) in intracellular loop B, and investigated whether they were accessible to extracellular mercurials. AQP1 and its mutants were expressed in Xenopus laevis oocytes, and the osmotic permeability (P(f)) of the oocytes was determined. C189S had wild-type P(f) but was not sensitive to HgCl(2). Expression of all three C189S cysteine mutants resulted in increased P(f), and all three mutants regained mercurial sensitivity. These results, especially the inhibitions by the large mercurial p-chloromercunbenzene-sulfonic acid (pCMBS) ( approximately 6A wide), suggest that residues 71-73 at the pore are accessible to extracellular mercurials. A 30-ps molecular dynamics simulation (at 300 K) starting with crystallographic coordinates of AQP1 showed that the width of the pore bottleneck (between Connolly surfaces) can vary (w(avg) = 3.9 A, sigma = 0.75; hydrated AQP1). Thus, although the pore width would be > or = 6 A only for 0.0026 of the time, this might suffice for pCMBS to reach residues 71-73. Alternative explanations such as passage of pCMBS across the AQP1 tetramer center or other unspecified transmembrane pathways cannot be excluded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号