首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   88篇
  2024年   7篇
  2023年   1篇
  2021年   2篇
  2020年   28篇
  2019年   38篇
  2018年   33篇
  2017年   6篇
  2016年   17篇
  2015年   22篇
  2014年   13篇
  2013年   5篇
  2012年   5篇
  2011年   4篇
排序方式: 共有181条查询结果,搜索用时 13 毫秒
1.
The collective redox activities of transition‐metal (TM) cations and oxygen anions have been shown to increase charge storage capacity in both Li‐rich layered and cation‐disordered rock‐salt cathodes. Repeated cycling involving anionic redox is known to trigger TM migration and phase transformation in layered Li‐ and Mn‐rich (LMR) oxides, however, detailed mechanistic understanding on the recently discovered Li‐rich rock‐salt cathodes is largely missing. The present study systematically investigates the effect of oxygen redox on a Li1.3Nb0.3Mn0.4O2 cathode and demonstrates that performance deterioration is directly correlated to the extent of oxygen redox. It is shown that voltage fade and hysteresis begin only after initiating anionic redox at high voltages, which grows progressively with either deeper oxidation of oxygen at higher potential or extended cycling. In contrast to what is reported on layered LMR oxides, extensive TM reduction is observed but phase transition is not detected in the cycled oxide. A densification/degradation mechanism is proposed accordingly which elucidates how a unique combination of extensive chemical reduction of TM and reduced quality of the Li percolation network in cation‐disordered rock‐salts can lead to performance degradation in these newer cathodes with 3D Li migration pathways. Design strategies to achieve balanced capacity and stability are also discussed.  相似文献   
2.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
3.
4.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
5.
6.
A new class of layered cathodes, Li[NixCoyB1?x?y]O2 (NCB), is synthesized. The proposed NCB cathodes have a unique microstructure in which elongated primary particles are tightly packed into spherical secondary particles. The cathodes also exhibit a strong crystallographic texture in which the ab layer planes are aligned along the radial direction, facilitating Li migration. The microstructure, which effectively suppresses the formation of microcracks, improves the cycling stability of the NCB cathodes. The NCB cathode with 1.5 mol% B delivers a discharge capacity of 234 mAh g?1 at 0.1 C and retains 91.2% of its initial capacity after 100 cycles (compared to values of 229 mAh g?1 at 0.1 C and 78.8% for pristine Li[Ni0.9Co0.1]O2). This study shows the importance of controlling the microstructure to obtain the required cycling stability, especially for Ni‐rich layered cathodes, where the main cause of capacity fading is related to mechanical strain in their charged state.  相似文献   
7.
8.
A unique nanostructure of 3D and vertically aligned and interconnected porous carbon nanosheets (3D‐VCNs) is demonstrated by a simple carbonization of agar. The key feature of 3D‐VCNs is that they possess numerous 3D channels with macrovoids and mesopores, leading to high surface area of 1750 m2 g?1, which play an important role in loading large amount of sulfur, while vertically aligned microporous carbon nanosheets act as the multilayered physical barrier against polysulfides anions and prevent their dissolution in the electrolyte due to strong adsorption during cycling process. As a result, the 3D hybrid (3D‐S‐VCNs) infiltered with 68.3 wt% sulfur exhibits a high and stable reversible capacity of 844 mAh g?1 at the current density of 837 mA g?1 with excellent Coulombic efficiency ≈100%, capacity retention of ≈80.3% over 300 cycles, and good rate ability (the reversible capacity of 738 mAh g?1 at the high current density of 3340 mA g?1). The present work highlights the vital role of the introduction of 3D carbon nanosheets with macrovoids and mesopores in enhancing the performance of LSBs.  相似文献   
9.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   
10.
Lithium‐sulfur batteries (LSBs) have been regarded as a competitive candidate for next‐generation electrochemical energy‐storage technologies due to their merits in energy density. The sluggish redox kinetics of the electrochemistry and the high solubility of polysulfides during cycling result in insufficient sulfur utilization, severe polarization, and poor cyclic stability. Herein, sulfiphilic few‐layered MoSe2 nanoflakes decorated rGO (MoSe2@rGO) hybrid has been synthesized through a facile hydrothermal method and for the first time, is used as a conceptually new‐style sulfur host for LSBs. Specifically, MoSe2@rGO not only strongly interacts with polysulfides but also dynamically strengthens polysulfide redox reactions. The polarization problem is effectively alleviated by relying on the sulfiphilic MoSe2. Moreover, MoSe2@rGO is demonstrated to be beneficial for the fast nucleation and uniform deposition of Li2S, contributing to the high discharge capacity and good cyclic stability. A high initial capacity of 1608 mAh g?1 at 0.1 C, a slow decay rate of 0.042% per loop at 0.25 C, and a high reversible capacity of 870 mAh g?1 with areal sulfur loading of 4.2 mg cm?2 at 0.3 C are obtained. The concept of introducing sulfiphilic transition‐metal selenides into the LSBs system can stimulate engineering of novel architectures with enhanced properties for various energy‐storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号