首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14744篇
  免费   1235篇
  国内免费   816篇
  2024年   35篇
  2023年   247篇
  2022年   342篇
  2021年   421篇
  2020年   530篇
  2019年   770篇
  2018年   674篇
  2017年   476篇
  2016年   451篇
  2015年   535篇
  2014年   787篇
  2013年   1109篇
  2012年   597篇
  2011年   720篇
  2010年   511篇
  2009年   565篇
  2008年   594篇
  2007年   662篇
  2006年   650篇
  2005年   637篇
  2004年   476篇
  2003年   461篇
  2002年   447篇
  2001年   374篇
  2000年   340篇
  1999年   247篇
  1998年   274篇
  1997年   266篇
  1996年   228篇
  1995年   219篇
  1994年   215篇
  1993年   212篇
  1992年   176篇
  1991年   163篇
  1990年   146篇
  1989年   146篇
  1988年   124篇
  1987年   93篇
  1986年   86篇
  1985年   124篇
  1984年   152篇
  1983年   84篇
  1982年   109篇
  1981年   86篇
  1980年   69篇
  1979年   65篇
  1978年   36篇
  1977年   16篇
  1976年   19篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
3.
《Endocrine practice》2021,27(11):1156-1164
ObjectiveTo provide a review of the impact of high deductible health plans (HDHPs) on the utilizations of services required for optimal management of diabetes and subsequent health outcomes.MethodsSystematic literature review of studies published between January 1, 2000, and May 7, 2021, was conducted that examined the impact of HDHP on diabetes monitoring (eg, recommended laboratory and surveillance testing), routine care (eg, ambulatory appointments), medication management (eg, medication initiation, adherence), and acute health care utilization (eg, emergency department visits, hospitalizations, incident complications).ResultsOf the 303 reviewed articles, 8 were relevant. These studies demonstrated that HDHPs lower spending at the expense of reduced high-value diabetes monitoring, routine care, and medication adherence, potentially contributing to the observed increases in acute health care utilization. Additionally, patient out-of-pocket costs for recommended screenings doubled, and total health care expenditures increased by 49.4% for HDHP enrollees compared with enrollees in traditional health plans. Reductions in disease monitoring and routine care and increases in acute health care utilization were greatest in lower-income patients. None of the studies examined the impact of HDHPs on access to diabetes self-management education, technology use, or glycemic control.ConclusionAlthough HDHPs reduce some health care utilization and costs, they appear to do so at the expense of limiting high-value care and medication adherence. Policymakers, providers, and payers should be more cognizant of the potential for negative consequences of HDHPs on patients’ health.  相似文献   
4.
Kinetic parameters of 3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea (DCMU)-induced inhibition of electron transport in chloroplast thylakoids isolated from Phaseolus vulgaris L. cv. Oregon 1604 were determined from analysis of a convergent, parallel electrical circuit. Through this analogue, the apparent affinity of the purported binding site for DCMU (K1) and the relative amount of DCMU-insensitive electron transport (vmax1/vo) were obtained using a reiterative non-linear least squares curve-fitting procedure. Exposure of thylakoids to heat caused a gradual increase in K1 (or decrease in the affinity of the thylakoid for DCMU) with an apparent activation energy of 134 kJ mol−1. Tryptic susceptibility of a protein region regulating K1 also decreased gradually with exposure to 45°C, suggesting that the heat-induced increase in K1 might be due to a protein conformational change. On the other hand, thylakoid exposure to 45°C resulted in a rapid (<5 min) irreversible increase in vmaxI/vo, which was also the apparent result of a conformational change in a region of the protein which regulates this function. These results are suggestive of the existence of differential thermal sensitivities of proteins within the thylakoids and, perhaps, of different regions within a single membrane protein.  相似文献   
5.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
6.
Lymphocyte antigens were tested in sheep which had been selected for responsiveness to vaccination against the intestinal nematode Trichostrongylus colubriformis. These sheep had been bred in an assortative mating programme which produced offspring designated as either “high responders” or “low responders”, with highly heritable resistance or susceptibility.Ovine lymphocyte antigen (OLA) typing antisera were obtained from parous ewes in the course of matings which produced the high and low responder flocks. A particular antigen (SY1) was found to be present in high frequency on the lymphocytes of high responder (72·2%) and in lower frequency (21·9%) on the lymphocytes of low responder rams. In ewes, the frequency for high responders was 65·7% and for low responders it was 33·5%. A similar association between the SY1 antigen and low faecal egg count was found in random-bred sheep which had been vaccinated with irradiated larvae and challenged with normal larvae. The conclusion was drawn that this lymphocyte antigen was likely to be part of the sheep major histocompatibility complex which influenced the immune response of sheep to vaccination against the parasite.  相似文献   
7.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
8.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   
9.
《Cell reports》2020,30(7):2065-2074.e4
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   
10.
Human Tamm-Horsfall urinary glycoprotein from an individual of the blood group Sd(a+) phenotype was tritium-labelled by treatment with galactose oxidase and sodium boro[3H]hydride and was then digested with endo-beta-galactosidase. A series of dialysable, labelled fragments was released from which a pentasaccharide was isolated that strongly inhibited the agglutination of Sd(a+) red cells by human anti-Sda serum and hence contained the Sda determinant structure. Reduction, methylation analysis and sequential exo-glycosidase digestion established the structure of the pentasaccharide as: GalNAc beta(1 leads to 4)[NeuAc(2 leads to 3)]Gal beta(1 leads to 4)GlcNAc beta(1 leads to 3)Gal  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号