首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2742篇
  免费   295篇
  国内免费   58篇
  2024年   10篇
  2023年   43篇
  2022年   36篇
  2021年   70篇
  2020年   81篇
  2019年   101篇
  2018年   145篇
  2017年   84篇
  2016年   67篇
  2015年   55篇
  2014年   119篇
  2013年   223篇
  2012年   55篇
  2011年   134篇
  2010年   152篇
  2009年   184篇
  2008年   186篇
  2007年   198篇
  2006年   160篇
  2005年   91篇
  2004年   77篇
  2003年   57篇
  2002年   80篇
  2001年   51篇
  2000年   45篇
  1999年   52篇
  1998年   46篇
  1997年   39篇
  1996年   28篇
  1995年   40篇
  1994年   34篇
  1993年   35篇
  1992年   41篇
  1991年   33篇
  1990年   32篇
  1989年   25篇
  1988年   6篇
  1987年   11篇
  1986年   6篇
  1985年   17篇
  1984年   32篇
  1983年   21篇
  1982年   30篇
  1981年   19篇
  1980年   9篇
  1979年   15篇
  1978年   9篇
  1977年   5篇
  1976年   2篇
  1971年   1篇
排序方式: 共有3095条查询结果,搜索用时 31 毫秒
1.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
2.
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.  相似文献   
3.
We report on a combined cold neutron backscattering and spin-echo study of the short-range and long-range nanosecond diffusion of the model globular protein bovine serum albumin (BSA) in aqueous solution as a function of protein concentration and NaCl salt concentration. Complementary small angle X-ray scattering data are used to obtain information on the correlations of the proteins in solution. Particular emphasis is put on the effect of crowding, i.e. conditions under which the proteins cannot be considered as objects independent of each other. We thus address the question at which concentration this crowding starts to influence the static and in particular also the dynamical behaviour. We also briefly discuss qualitatively which charge effects, i.e. effects due to the interplay of charged molecules in an electrolyte solution, may be anticipated. Both the issue of crowding as well as that of charge effects are particularly relevant for proteins and their function under physiological conditions, where the protein volume fraction can be up to approximately 40% and salt ions are ubiquitous. The interpretation of the data is put in the context of existing studies on related systems and of existing theoretical models.  相似文献   
4.
Summary Voltage-sensitive membrane potential probes were used to monitor currents resulting from positive or negative charge movement across small and large unilamellar phosphatidylcholine (PC) vesicles. Positive currents were measured for the paramagnetic phosphonium ion or for K+-valinomycin. Negative currents were indirectly measured for the anionic proton carriers CCCP and DNP by monitoring transmembrane proton currents. Phloretin, a compound that is believed to decrease dipole fields in planar bilayers, increases positive currents and decreases negative currents when added to egg PC vesicles. In these vesicles, positive currents are increased by phloretin addition to a much larger degree than CCCP currents are reduced. This asymmetry, with respect to the sign of the charge carrier, is apparently not the result of changes in the membrane dielectric constant. It is most easily explained by deeper binding minima at the membrane-solution interface for the CCCP anion, when compared to the phosphonium. The measured asymmetry and the magnitudes of the current changes are consistent with the predictions of a point dipole model. The use of potential-sensitive probes to estimate positive and negative currents, provides a methodology to monitor changes in the membrane dipole potential in vesicle systems.  相似文献   
5.
The suggestion that the electron acceptor A1 in plant photosystem I (PSI) is a quinone molecule is tested by comparisons with the bacterial photosystem. The electron spin polarized (ESP) EPR signal due to the oxidized donor and reduced quinone acceptor (P 870 + Q-) in iron-depleted bacterial reaction centers has similar spectral characteristics as the ESP EPR signal in PSI which is believed to be due to P 700 + A 1 - , the oxidized PSI donor and reduced A1. This is also true for better resolved spectra obtained at K-band (24 GHz). These same spectral characteristics can be simulated using a powder spectrum based on the known g-anisotropy of reduced quinones and with the same parameter set for Q- and A1 -. The best resolution of the ESP EPR signal has been obtained for deuterated PSI particles at K-band. Simulation of the A1 - contribution based on g-anisotropy yields the same parameters as for bacterial Q- (except for an overall shift in the anisotropic g-factors, which have previously been determined for Q-). These results provide evidence that A1 is a quinone molecule. The electron spin polarized signal of P700 + is part of the better resolved spectrum from the deuterated PSI particles. The nature of the P700 + ESP is not clear; however, it appears that it does not exhibit the polarization pattern required by mechanisms which have been used so far to explain the ESP in PSI.Abbreviations hf hyperfine - A0 A0 acceptor of photosystem I - A1 A1 acceptor of photosystem I - Brij-58 polyoxyethylene 20 cetyl ether - CP1 photosystem I particles which lack ferridoxin acceptors - ESP electron spin polarized - EPR electron paramagnetic resonance - I intermediary electron acceptor, bacteriopheophytin - LDAO lauryldimethylamine - N-oxide, P700 primary electron donor of photosystem I - PSI photosystem I - P700 T triplet state of primary donor of photosystem I - P870 primary donor in R. sphaeroides reaction center - Q quinore-acceptor in photosynthetic bacteria - RC reaction center  相似文献   
6.
A reagent (I, N4-(9-fluorenylmethyloxycarbonyl-4-amino-1-oxyl-4-succinimidyloxycarbonyl-2,2,6,6-tetramethylpiperidine)) that acylates calmodulin specifically at lysines 75 and 148 was recently described (Jackson and Puett, 1984). Chromatographic procedures are described that permit purification to apparent homogeneity of a 1 : 1 and a 2 : 1 adduct characterized by modification at just Lys 75 or at Lys 75 and Lys 148, respectively. These adducts are suitable for detailed characterization in an effort to provide information on calmodulin structure-function relationships. The adducts were incapable of, or exhibited low potency (e.g., 0.1% that of calmodulin) in, stimulating the activity of an activatable bovine brain cyclic nucleotide phosphodiesterase (3,5-cyclic AMP 5-nucleotidehydrolase, EC 3.1.4.17) preparation. Electron paramagnetic resonance (EPR) spectroscopy of the adducts yielded rotational correlation times of approximately 3–6 nsec, in agreement with the expected value for a hydrated protein of this molecular weight (5–7 nsec). Thus, the nitroxide reporter group appears to monitor closely the motion of the protein, and there is no evidence of a major conformational change in the derivative relative to calmodulin. Interestingly, removal of the fluorenylmethyloxycarbonyl portion from the 1 : 1 adduct to give a deprotected 1 : 1 adduct resulted in apparent greater mobility of the probe, since the rotational correlation coefficient was found to be 1 nsec. Circular dichroic spectra were obtained over the wavelength interval 200–250 nm on the two adducts and on the deprotected 1 : 1 adduct. These derivatives, like calmodulin, exhibited a Ca2+-mediated increase in helicity, and the spectra of the adducts in the presence of a chelating agent and in the presence of saturating Ca2+ were similar to those obtained for calmodulin. Thus, the adducts have secondary structures similar to the native protein. Proton nuclear magnetic resonance spectra were determined in the aromatic region (6–8 ppm) for the deprotected 1 : 1 adduct before and after reduction of the nitroxide with ascorbate. The nitroxide had little effect on the chemical shifts of the two tyrosines and the single histidine relative to calmodulin, although the histidine C4 resonance was markedly altered by the addition of ascorbate. In order to explore in greater detail the tertiary structure of the 1 : 1 adduct, a reagent similar to I, but not paramagnetic, was synthesized. This compound II, -N-(9-fluorenylmethyloxycarbonyl)alanine N-hydroxysuccinimide ester, like I, forms a 1 : 1 adduct at Lys 75 and a 2 : 1 adduct at Lys 75 and Lys 148. Proton NMR spectra of adducts with II were not complicated by the relaxation effects arising from adducts with I; thus more definitive assignments could be made to the upfield resonances, including the fluorene protons. Again, it was possible to conclude that adduct formation had no major effect on the tertiary structure of the protein as monitored by chemical shifts associated with various residues. We conclude that modification of just Lys 75, a residue in the long connecting helix of calmodulin, does not lead to major changes in protein conformation but does interfere with the ability of calmodulin to stimulate an activatable form of bovine brain cyclic nucleotide phosphodiesterase.  相似文献   
7.
Birch ( Betula pendula Roth.) was investigated under steady-state nutrition and growth at different incident photon flux densities (PFD) and different relative addition rates of nitrogen. PFD had a strong influence on the relative growth rate at optimum nutrition and on the nitrogen productivity (growth rate per unit of nitrogen) but little effect on the formal relationships between nitrogen and growth, i.e. PFD and nitrogen nutrition are orthogonal growth factors. At a given suboptimum nitrogen (the same distance from optimum), increased PFD increased the relative growth rate and, therefore, the relative uptake rate and the required relative addition rate in accordance with the theoretical equality between these three parameters at steady-state nutrition. Correspondingly, at a given suboptimum relative addition rate, increased PFD decreased nitrogen status (larger distance from optimum) at an unchanged relative growth rate. Nutrient uptake rate, dry matter content, and partitioning of biomass and nutrients are strongly influenced by nitrogen status. PFD influences these characteristics, but only to an extent corresponding to its effect on the nitrogen status. The influence of PDF on the relative growth rate at optimum and on nitrogen productivity is well described by hyperbolic relationships, similar to reported PFD/photosynthesis relationships. These expressions for plant growth as well as the productivities of leaf area and quantum appear to be valuable characteristics of plant responses to light and nutrition. Although the calculated PFD/growth relationships indicate saturation at high values of PFD, a more realistic estimate of PFD at which saturation occurs is about 30 mol m−2 day−1, where the highest relative growth rate and nitrogen productivity were experimentally determined. No significant effect was observed because of day length differences between the present and previous experiments.  相似文献   
8.
Summary The secondary and tertiary structural features of botulinum neurotoxin (NT) serotype A, a dichain protein (Mr 145 000), and its two subunits, the heavy (H) and light (L) chains (Mr 97 000 and 53 000, respectively) were examined using circular dichroism and fluorescence spectorscopy. Nearly 70% of the amino acid residues in each of the three polypeptide preparations were found in ordered structure (sum of helix, sheet and turns). Also, the helix, sheet, turns and random coil contents of the dichain NT were nearly equal to the weighted mean of each of these secondary structure parameters of the L and H chains; e.g., sum of helix of L chain (22%) and H chain (18.7%), as weighted mean, 19.8% was similar to that of NT (20%). These agreements suggested that the secondary structures of the subunits of the dichain NT do not significantly change when they are separated as isolated L and H chains. Fluorescence emission maximum of L chain, 4 nm less (blue shift) than that of H chain, suggested relatively more hydrophobic environment of fluorescent tryptophan residue(s) of L chain. Tryptophan fluorescence quantum yields of L chain, H chain and the NT, 0.072, 0.174 and 0.197, respectively, suggested that a) an alteration in the micro-environment of the tryptophan residues was possibly caused by interactions of L and H chain subunits of the NT and b) quantum yields for L and H chains were altered when they are together as subunits of the NT. Possible implications of structural features of the L and H chains, their interactions and the molecular mechanism of action of botulinum NT are assessed.  相似文献   
9.
10.
We investigated several photosynthetic parameters of a virescent mutant of durum wheat and of its wild-type. Electron transport rate to ferricyanide was the same in the two genotypes when expressed on leaf area basis while O2 evolution of the leaf tissue in saturating light and CO2 was slightly higher in the yellow genotype. RuBPCase was also slightly higher. Quantum yield per absorbed light was similar in the two genotypes. P700 and Cyt f were less concentrated in the mutant while PS II was only marginally lower. The light response curve of CO2 assimilation indicated higher level of photosynthesis of the mutant in high light, which corresponded to a lower non-photochemical quenching compared to the wild-type. It is concluded that the reaction centres, cyt f and chlorophyll are not limiting factors of electron transport in wheat seedlings and that electron transport capacity is in excess with respect to that needed for driving photosynthesis. Since the differences in photosynthesis reflect differences in RuBPCase activity, it is suggested that this enzyme limits photosynthesis in wheat seedlings also at high light intensities.Abbreviations cyt f cytochrome f - chl chlorophyll - PS II photosystem II - Pnmax maximum photosynthesis - RuBCase Ribulose, 1-5,bisphosphate carboxylase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号