首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   1篇
  2019年   1篇
  2014年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2005年   1篇
  2001年   2篇
  1998年   1篇
  1996年   2篇
  1990年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The relationship between structure and function for the sulfite reductases   总被引:1,自引:0,他引:1  
The six-electron reductions of sulfite to sulfide and nitrite to ammonia, fundamental to early and contemporary life, are catalyzed by diverse sulfite and nitrite reductases that share an unusual prosthetic assembly in their active centers, namely siroheme covalently linked to an Fe4S4 cluster. The recently determined crystallographic structure of the sulfite reductase hemoprotein from Escherichia coli complements extensive biochemical and spectroscopic studies in revealing structural features that are key for the catalytic mechanism and in suggesting a common symmetric structural unit for this diverse family of enzymes.  相似文献   
2.
This is the first X-ray crystal structure of the monomeric form of sulfite reductase (SiR) flavoprotein (SiRFP-60) that shows the relationship between its major domains in an extended position not seen before in any homologous diflavin reductases. Small angle neutron scattering confirms this novel domain orientation also occurs in solution. Activity measurements of SiR and SiRFP variants allow us to propose a novel mechanism for electron transfer from the SiRFP reductase subunit to its oxidase metalloenzyme partner that, together, make up the SiR holoenzyme. Specifically, we propose that SiR performs its 6-electron reduction via intramolecular or intermolecular electron transfer. Our model explains both the significance of the stoichiometric mismatch between reductase and oxidase subunits in the holoenzyme and how SiR can handle such a large volume electron reduction reaction that is at the heart of the sulfur bio-geo cycle.  相似文献   
3.
Rhodnius prolixus is a blood feeding triatomine bug that contains salivary nitric oxide bound to hemoproteins previously named nitrophorins. Nitrophorins, in addition to storing and transporting NO, have two other functions such as anti-histaminic and anti-clotting (displayed by nitrophorin 2 only). Additionally, nitrophorins display a thiol oxidase reaction, where cysteine is oxidized to cystine with the production of hydrogen peroxide. In this paper the heme-peroxidase reaction of nitrophorins is described. The heme moiety of nitrophorins is destroyed by addition of cysteine or hydrogen peroxide. No biliverdin is produced during this reaction. We have also found that during the thiol oxidase reaction, nitrophorins can destroy norepinephrine, conferring an additional vasodilatory competence for this class of salivary molecules.  相似文献   
4.
A new metalloenzyme formed by a Fe(III)‐mesoporphyrin IX functionalized by two helical decapeptides was synthesized to mimic function and structural features of a hemoprotein active site. Each decapeptide comprises six 2‐aminoisobutyric acid residues, which constrain the peptide to attain a helical conformation, and three glutamic residues for improving the solubility of the catalyst in aqueous solutions. The new compound shows a marked amphiphilic character, featuring a polar outer surface and a hydrophobic inner cavity that hosts the reactants in a restrained environment where catalysis may occur. The catalytic activity of this synthetic mini‐protein was tested with respect to the oxidation of l ‐ and d ‐Dopa by hydrogen peroxide, showing moderate stereoselectivity. Structural information on the new catalyst and its adduct with the l ‐ or d ‐Dopa substrate were obtained by the combined use of spectroscopic techniques and molecular mechanics calculations. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
5.
A peroxidase has been purified to homogeneity from Ipomoea batatas seedlings using ammonium sulphate precipitation and chromatography on DEAE-cellulose and SP-Sephadex columns. The pH optimum of the enzyme was found to be dependent on the buffer and substrate used. The isoelectric point is 7.3. The activation energy was estimated to be 14 kcal/mole. The prosthetic group was shown to be ferriprotoporphyrin IX. Gel chromatography and PAGE indicate that the purified protein is composed of a single polypeptide of MW 42 000. The amino acid composition appears to be similar to those reported for other plant peroxidases.  相似文献   
6.
【目的】探讨一种构建马链球菌兽疫亚种基因缺失突变株的方法。【方法】PCR扩增目的基因,用pJR700温度敏感载体系统,构建目的基因载体;反向PCR扩增目的基因缺失载体片段,连接,产生目的基因缺失载体;电转化缺失重组质粒导入感受态细胞,先在37℃卡拉霉素(kan)培养基中连续培养,然后在30℃不含kan液体培养基中传代,挑取抗生素敏感菌落,PCR扩增检测抗生素敏感菌染色体上目的基因片段和链黑霉素抗性实验确认血红素受体基因缺失。【结果】获得不含抗生素基因的马链球菌兽疫亚种血红素受体基因缺失突变株。【结论】用pJR700温度敏感载体系统,构建马链球菌兽疫亚种基因缺失突变株是可行的。  相似文献   
7.
Thermophilic cytochrome P450 enzymes are of potential interest from structural, mechanistic, and biotechnological points of view. The structures and properties of two such enzymes, CYP119 and CYP175A1, have been investigated and provide the foundation for future work on thermophilic P450 enzymes.  相似文献   
8.
The effect of glycerol on the structure and redox properties of horse heart cytochrome c was investigated by absorption spectroscopy, circular dichroism, and dc cyclic voltammetry techniques. The results show that the organic solvent increases the -helix structure of the protein and induces slight changes at the active-site environment; however, the overall tertiary structure does not appear to be significantly perturbed. Glycerol stabilizes cytochrome c, the free energy of denaturation (G 0) being approximately 0.7 kcal/mol larger than that determined in phosphate buffer under the same conditions, and influences the heterogeneous electron transfer kinetics at a chemically modified gold electrode; on the other hand, the redox potential of the protein is unaltered. On the whole, the results obtained indicate that glycerol acts as a suitable stabilizing agent of cytochrome c, which is of interest for application in biotechnology; the organic solvent does not alter the tertiary structure significantly or the redox properties of the protein. This has to be interpreted not only in terms of the glycerol-induced solvent ordering around the protein surface, but also as due to the specific features of the protein matrix.  相似文献   
9.
Biosynthesis of the leukotriene A (LTA) class of epoxide is a lipoxygenase-catalyzed transformation requiring a fatty acid hydroperoxide substrate containing at least three double bonds. Here, we report on biosynthesis of a dienoic analog of LTA epoxides via a different enzymatic mechanism. Beginning with homolytic cleavage of the hydroperoxide moiety, a catalase/peroxidase-related hemoprotein from Anabaena PCC 7120, which occurs in a fusion protein with a linoleic acid 9R-lipoxygenase, dehydrates 9R-hydroperoxylinoleate to a highly unstable epoxide. Using methods we developed for isolating extremely labile compounds, we prepared and purified the epoxide and characterized its structure as 9R,10R-epoxy-octadeca-11E,13E-dienoate. This epoxide hydrolyzes to stable 9,14-diols that were reported before in linoleate autoxidation (Hamberg, M. 1983. Autoxidation of linoleic acid: Isolation and structure of four dihydroxy octadecadienoic acids. Biochim. Biophys. Acta 752: 353–356) and in incubations with the Anabaena enzyme (Lang, I., C. Göbel, A. Porzel, I. Heilmann, and I. Feussner. 2008. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120. Biochem. J. 410: 347–357). We also prepared an equivalent epoxide from 13S-hydroperoxylinoleate using a “biomimetic” chemical method originally described for LTA4 synthesis and showed that like LTA4, the C18.2 epoxide conjugates readily with glutathione, a potential metabolic fate in vivo. We compare and contrast the mechanisms of LTA-type allylic epoxide synthesis by lipoxygenase, catalase/peroxidase, and chemical transformations. These findings provide new insights into the reactions of linoleic acid hydroperoxides and extend the known range of catalytic activities of catalase-related hemoproteins.  相似文献   
10.
Here we describe a synthetic protein (6H7H) designed to bind four heme groups via bis-histidine axial ligation. The hemes are designed to bind perpendicular to another in an orientation that mimics the relative geometry of the two heme a groups in the active site of cytochrome c oxidase. Our newly developed protein-design program, called CORE, was implemented in the design of this novel hemoprotein. Heme titration studies resolved four distinct K(D) values (K(D1) = 80 nM, K(D2) = 18 nM, K(D3) > or = 3 mM, K(D4) < or = 570 nM, with K(D3) x K(D4) = 1700); positive cooperativity in binding between the first and second heme, as well as substantial positive cooperativity between the third and forth heme, was observed. Chemical and thermal denaturation studies reveal a stable protein with native-like properties. Visible circular dichroism spectroscopy of holo-6H7H indicates excitonic coupling between heme groups. Further electrochemical and spectroscopic characterization of the holo-protein support a structure that is consistent with the predefined target structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号