首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  2013年   1篇
  2012年   1篇
  2001年   2篇
  1999年   3篇
  1991年   1篇
  1989年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Delhanty P  Locke M 《Tissue & cell》1989,21(6):891-909
Insect epidermal cell surfaces can be seen by scanning electron microscopy after removal of the basal lamina. This let us study surface changes in the 5th larval stage of Calpodes ethlius (Lepidoptera, Hesperiidae) in preparation for metamorphosis at the end of the stadium, in particular changes in the basal cell processes or feet, intercellular lymph spaces, filopodia and hemidesmosomes. The feet develop in three phases, initiation, elongation and contraction. Initial growth begins immediately after ecdysis and continues until commitment to pupation 66 hr later. During this phase the feet are randomly oriented. Elongation and orientation begin after commitment to pupation. Orientation is probably achieved by selective survival and growth of those feet that are axially oriented rather than by reorientation. As the larva shortens to the pupal form late in the stadium, contraction of the feet occurs and the cells become columnar. The feet finally disappear as the cells rearrange themselves into new positions in the pupal epidermis. The lateral margins of the feet are united by adhesions even when their interdigitations are most complex. The adhesions separate an intercellular lymph space from the haemolymph. The lymph space remains small through most of the stadium, but enlarges with the loss of lateral junctions as the feet contract and eventually extends along most of the length of the columnar cells. Filopodia then form and span the gaps between the cells as though they have been induced by the separation and loss of lateral cell to cell contact. Scanning electron microscopy also shows that hemidesmosomes reflect the axial alignment of the cells even before the orientation of the feet. The hemidesmosome plaques are linear structures having a constant width of 0.15 - 0.2 mum and variable length. They arise in short sections and lengthen by the linear addition of more sections with the same width. Late in the stadium they lose their axial alignment and may become branched.  相似文献   
2.
Hemidesmosomes (HDs) are cellular junctions that anchor epithelial cells to the extracellular matrix (ECM) and are associated morphologically with the cytoskeleton. Hemidesmosomal molecular components include two proteins involved in linking intermediate filaments, HD1/plectin and BP230, and two transmembrane proteins, BP180 and the alpha6beta4 integrin, a laminin receptor. In cells lacking BP230 and BP180, HD1/plectin still associates with alpha6beta4 integrin, forming HD-like structures, called type II HDs. In the present study, we used an intestinal epithelial cell line that expresses HD1/plectin and the alpha6beta4 integrin to investigate the regulation of assembly of these proteins in type II HDs. These compounds were found to be clustered at sites of cell-ECM contact and their polarized localization was influenced by either cell confluency or extracellular matrix deposition. Conventional and immunoelectron microscopy showed that HD1/plectin and the beta4 integrin subunit are colocalized in an adhesion structure. Using cytoskeleton-disrupting drugs and confocal microscopy, we demonstrated that type II HDs are made up of numerous individual plaques whose assembly into a cluster requires actin filaments, but not microtubules.  相似文献   
3.
SYNOPSIS. The ultrastructure of attached Trypanosoma vivax epimastigote clusters in the proboscis of the tsetse fly Glossina fuscipes is described from electron micrographs of thin sections. Some flagellates are attached directly to the lining of the insect's labrum by their flagella, most of which are aligned along the long axis of the proboscis. Other trypanosomes are attached indirectly, their flagella adhering to those of flagellates which are directly attached. Junctional complexes similar to those described from metazoan epithelia are found on the flagellar membrane. A long zonular hemidesmosome attaches the flagellum to the proboscis wall and a series of closely set macular desmosomes link the flagellar membranes of adjacent flagellates. Unlike the trypomastigote stages of T. vivax, more than one row of macular desmosomes may be present along the flagellum-body junction of the trypanosome. It is suggested that all these Junctional complexes serve to buttress the flagellate's attachment to its insect host and so maintain anchorage of the parasite during the fly's blood meals. The ability of the flagellum of trypanosomatids to form Junctional complexes may be a factor contributing to their success as parasites, this adaptation enabling them to multiply while attached to host surfaces.  相似文献   
4.
SYNOPSIS The course of Trypanosoma congolense infections in Glossina morsitans morsitans was followed by electron-microscopic examination of ultrathin sections of the guts and proboscises of infected flies. Guts dissected from flies 7 days after infection with culture procyclic forms of T. congolense had heavy trypanosome infections in the midgut involving both the endo- and ectoperitrophic spaces. Trypanosomes were also seen in the process of penetrating the fully formed peritrophic membrane in the central region of the midgut. By post infection day 21, trypanosomes had reached the proboscis of the fly and were found as clumps of epimastigote forms attached to the labrum by hemidesmosomes between their flagella and the chitinous lining of the food canal. Desmosome connections were observed between the flagella of adjacent epimastigotes. Flies examined at postinfection days 28 and 42 had, in addition to the attached forms in the labrum, free forms in the hypopharynx.  相似文献   
5.
Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with “stampcils” focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein—fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.  相似文献   
6.
Tissue functions and mechanical coupling of cells must be integrated throughout development. A striking example of this coupling is the interactions of body wall muscle and hypodermal cells in Caenorhabditis elegans. These tissues are intimately associated in development and their interactions generate structures that provide a continuous mechanical link to transmit muscle forces across the hypodermis to the cuticle. Previously, we established that mup-4 is essential in embryonic epithelial (hypodermal) morphogenesis and maintenance of muscle position. Here, we report that mup-4 encodes a novel transmembrane protein that is required for attachments between the apical epithelial surface and the cuticular matrix. Its extracellular domain includes epidermal growth factor-like repeats, a von Willebrand factor A domain, and two sea urchin enterokinase modules. Its intracellular domain is homologous to filaggrin, an intermediate filament (IF)-associated protein that regulates IF compaction and that has not previously been reported as part of a junctional complex. MUP-4 colocalizes with epithelial hemidesmosomes overlying body wall muscles, beginning at the time of embryonic cuticle maturation, as well as with other sites of mechanical coupling. These findings support that MUP-4 is a junctional protein that functions in IF tethering, cell-matrix adherence, and mechanical coupling of tissues.  相似文献   
7.
p27(BBP/eIF6) is an evolutionarily conserved protein that was originally identified as p27(BBP), an interactor of the cytoplasmic domain of integrin beta4 and, independently, as the putative translation initiation factor eIF6. To establish the in vivo function of p27(BBP/eIF6), its topographical distribution was investigated in mammalian cells and the effects of disrupting the corresponding gene was studied in the budding yeast, Saccharomyces cerevisiae. In epithelial cells containing beta4 integrin, p27(BBP/eIF6) is present in the cytoplasm and enriched at hemidesmosomes with a pattern similar to that of beta4 integrin. Surprisingly, in the absence and in the presence of the beta4 integrin subunit, p27(BBP/eIF6) is in the nucleolus and associated with the nuclear matrix. Deletion of the IIH S. cerevisiae gene, encoding the yeast p27(BBP/eIF6) homologue, is lethal, and depletion of the corresponding gene product is associated with a dramatic decrease of the level of free ribosomal 60S subunit. Furthermore, human p27(BBP/eIF6) can rescue the lethal effect of the iihDelta yeast mutation. The data obtained in vivo suggest an evolutionarily conserved function of p27(BBP/eIF6) in ribosome biogenesis or assembly rather than in translation. A further function related to the beta4 integrin subunit may have evolved specifically in higher eukaryotic cells.  相似文献   
8.
We have examined the mechanism and functional significance of hemidesmosome disassembly during normal epithelial cell migration and squamous carcinoma invasion. Our findings indicate that a fraction of EGF receptor (EGF-R) combines with the hemidesmosomal integrin alpha6beta4 in both normal and neoplastic keratinocytes. Activation of the EGF-R causes tyrosine phosphorylation of the beta4 cytoplasmic domain and disruption of hemidesmosomes. The Src family kinase inhibitors PP1 and PP2 prevent tyrosine phosphorylation of beta4 and disassembly of hemidesmosomes without interfering with the activation of EGF-R. Coimmunoprecipitation experiments indicate that Fyn and, to a lesser extent, Yes combine with alpha6beta4. By contrast, Src and Lck do not associate with alpha6beta4 to a significant extent. A dominant negative form of Fyn, but not Src, prevents tyrosine phosphorylation of beta4 and disassembly of hemidesmosomes. These observations suggest that the EGF-R causes disassembly of hemidesmosomes by activating Fyn, which in turn phosphorylates the beta4 cytoplasmic domain. Neoplastic cells expressing dominant negative Fyn display increased hemidesmosomes and migrate poorly in vitro in response to EGF. Furthermore, dominant negative Fyn decreases the ability of squamous carcinoma cells to invade through Matrigel in vitro and to form lung metastases following intravenous injection in nude mice. These results suggest that disruption of hemidesmosomes mediated by Fyn is a prerequisite for normal keratinocyte migration and squamous carcinoma invasion.  相似文献   
9.
We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the alpha6beta4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express alpha6beta4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the alpha6beta4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis ( approximately 1 ng/ml), the alpha6beta4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained alpha6beta4 in association with F-actin. Importantly, we demonstrate that this mobilization of alpha6beta4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-alpha and that it is associated with the phosphorylation of the beta4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin-rich cell protrusions that mediate alpha6beta4-dependent cell movement but also the disruption of alpha6beta4-containing hemidesmosomes by protein kinase C.  相似文献   
10.
Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with “stampcils” focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein—fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号