首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   103篇
  国内免费   9篇
  1028篇
  2024年   2篇
  2023年   5篇
  2022年   12篇
  2021年   13篇
  2020年   11篇
  2019年   20篇
  2018年   31篇
  2017年   21篇
  2016年   13篇
  2015年   24篇
  2014年   51篇
  2013年   65篇
  2012年   29篇
  2011年   58篇
  2010年   48篇
  2009年   60篇
  2008年   67篇
  2007年   55篇
  2006年   57篇
  2005年   48篇
  2004年   53篇
  2003年   60篇
  2002年   42篇
  2001年   18篇
  2000年   12篇
  1999年   25篇
  1998年   9篇
  1997年   24篇
  1996年   8篇
  1995年   14篇
  1994年   15篇
  1993年   12篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1980年   2篇
  1979年   1篇
排序方式: 共有1028条查询结果,搜索用时 15 毫秒
1.
Summary The specificity of interaction of amino acids with triplets in the acceptor helix stem of tRNA was investigated by means of a statistical analysis of 1400 tRNA sequences. The imprint of a prototypic genetic code at position 3–5 of the acceptor helix was detected, but only for those major amino acids, glycine, alanine, aspartic acid, and valine, that are formed by spark discharges of simple gases in the laboratory. Although remnants of the code at position 3–5 are typical for tRNAs of archaebacteria, eubacteria, and chloroplasts, eukaryotes do not seem to contain this code, and mitochondria take up an intermediary position. A duplication mechanism for the transposition of the original 3–5 code toward its present position in the anticodon stern of tRNA is proposed. From this viewpoint, the mode of evolution of mRNA and functional ribosomes becomes more understandable.Offprint requests to: W. Moller  相似文献   
2.
The packing of peptide helices in crystals of the leucine-rich decapeptide Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe provides an example of ladder-like leucylleucyl interactions between neighboring molecules. The peptide molecule forms a helix with five 5----1 hydrogen bonds and two 4----1 hydrogen bonds near the C terminus. Three head-to-tail NH ... O = C hydrogen bonds between helices form continuous columns of helices in the crystal. The helicial columns associate in an antiparallel fashion, except for the association of Leu ... Leu side chains, which occurs along the diagonal of the cell where the peptide helices are parallel. The peptide, with formula C56H102N10O13, crystallizes in space group P2(1)2(1)2(1) with Z = 4 and cell parameters a = 16.774(3) A, b = 20.032(3) A and c = 20.117(3) A; overall agreement factor R = 10.7% for 2014 data with magnitude of F(obs) greater than 3 sigma (F); resolution 1.0 A.  相似文献   
3.
The DNA binding domain (DBD) of gamma delta resolvase (residues 141-183) is responsible for the interaction of this site-specific DNA recombinase with consensus site DNA within the gamma delta transposable element in Escherichia coli. Based on chemical-shift comparisons, the proteolytically isolated DBD displays side-chain interactions within a hydrophobic core that are highly similar to those of this domain when part of the intact enzyme (Liu T, Liu DJ, DeRose EF, Mullen GP, 1993, J Biol Chem 268:16309-16315). The structure of the DBD in solution has been determined using restraints obtained from 2-dimensional proton NMR data and is represented by 17 conformers. Experimental restraints included 458 distances based on analysis of nuclear Overhauser effect connectivities, 17 phi and chi 1 torsion angles based on analysis of couplings, and 17 backbone hydrogen bonds determined from NH exchange data. With respect to the computed average structure, these conformers display an RMS deviation of 0.67 A for the heavy backbone atoms and 1.49 A for all heavy atoms within residues 149-180. The DBD consists of 3 alpha-helices comprising residues D149-Q157, S162-T167, and R172-N183. Helix-2 and helix-3 form a backbone fold, which is similar to the canonical helix-turn-helix motif. The conformation of the NH2-terminal residues, G141-R148, appears flexible in solution. A hydrophobic core is formed by side chains donated by essentially all hydrophobic residues within the helices and turns. Helix-1 and helix-3 cross with a right-handed folding topology. The structure is consistent with a mechanism of DNA binding in which contacts are made by the hydrophilic face of helix-3 in the major groove and the amino-terminal arm in the minor groove. This structure represents an important step toward analysis of the mechanism of DNA interaction by gamma delta resolvase and provides initial structure-function comparisons among the divergent DBDs of related resolvases and invertases.  相似文献   
4.
Electrostatic interactions are among the key factors determining the structure and function of proteins. Here we report experimental results that illuminate the functional importance of local dipoles to these interactions. The refined 1.7-A X-ray structure of the liganded form of the sulfate-binding protein, a primary sulfate active transport receptor of Salmonella typhimurium, shows that the sulfate dianion is completely buried and bound by hydrogen bonds (mostly main-chain peptide NH groups) and van der Waals forces. The sulfate is also closely linked, via one of these peptide units, to a His residue. It is also adjacent to the N-termini of three alpha-helices, of which the two shortest have their C-termini "capped" by Arg residues. Site-directed mutagenesis of the recombinant Escherichia coli sulfate receptor had no effect on sulfate-binding activity when an Asn residue was substituted for the positively charged His and the two Arg (changed singly and together) residues. These results, combined with other observations, further solidify the idea that stabilization of uncompensated charges in a protein is a highly localized process that involves a collection of local dipoles, including those of peptide units confined to the first turns of helices. The contribution of helix macrodipoles appears insignificant.  相似文献   
5.
The helix propagation and N-cap propensities of the amino acids have been measured in alanine-based peptides in 40 volume percent trifluoroethanol (40% TFE) to determine if this helix-stabilizing solvent uniformly affects all amino acids. The propensities in 40% TFE are compared with revised values of the helix parameters of alanine-based peptides in water. Revision of the propensities in water is the result of redefining the capping statistical weights and evaluating the helix nucleation constant with N-capping explicitly included in the helix-coil model. The propagation propensities of all amino acids increase in 40% TFE relative to water, but the increases are highly variable. In water, all beta-branched and beta-substituted amino acids are helix breakers. In 40% TFE, the propagation propensities of the nonpolar amino acids increase greatly, leaving charged and neutral polar, beta-substituted amino acids as helix breakers. Glycine and proline are strong helix breakers in both solvents. Free energy differences for helix propagation (delta delta G) between alanine and other nonpolar amino acids are twice as large in water as predicted from side-chain conformational entropies, but delta delta G values in 40% TFE are close to those predicted from side-chain entropies. This dependence of delta delta G on the solvent points to a specific role of water in determining the relative helix propensities of the nonpolar amino acids. The N-cap propensities converge toward a common value in 40% TFE, suggesting that differential solvation by water contributes to the diversity of N-cap values shown by the amino acids.  相似文献   
6.
The helix content of a series of peptides containing single substitutions of the 20 natural amino acids in a new designed host sequence, succinyl-YSEEEEKAKKAXAEEAEKKKK-NH2, has been determined using CD spectroscopy. This host is related to one previously studied, in which triple amino acid substitutions were introduced into a background of Glu-Lys blocks completely lacking alanine. The resulting free energies show that only Ala and Glu- prove to be helix stabilizing, while all other side chains are neutral or destabilizing. This agrees with results from studies of alanine-rich peptide modela, but not the previous Glu-Lys block oligomers in which Leu and Met also stabilize helix. The helix propensity scale derived from the previous block oligomers correlated well with the frequencies of occurrence of different side chains in helical sequences of proteins, whereas the values from the present series do not. The role of context in determining scales of helix propensity values is discussed, and the ability of algorithms designed to predict helix structure from sequence is compared.  相似文献   
7.
We have developed a new method for the prediction of the lateral and the rotational positioning of transmembrane helices, based upon the present status of knowledge about the dominant interaction of the tertiary structure formation. The basic assumption about the interaction is that the interhelix binding is due to the polar interactions and that very short extramembrane loop segments restrict the relative position of the helices. Another assumption is made for the simplification of the prediction that a helix may be regarded as a continuum rod having polar interaction fields around it. The polar interaction field is calculated by a probe helix method, using a copolymer of serine and alanine as probe helices. The lateral position of helices is determined by the strength of the interhelix binding estimated from the polar interaction field together with the length of linking loop segments. The rotational positioning is determined by the polar interaction field, assuming the optimum lateral configuration. The structural change due to the binding of a prosthetic group is calculated, fixing the rotational freedom of a helix that is connected to the prosthetic group. Applying this method to bacteriorhodopsin, the optimum lateral and rotational positioning of transmembrane helices that are very similar to the experimental configuration was obtained. This method was implemented by a software system, which was developed for this work, and automatic calculation became possible for membrane proteins comprised of several transmembrane helices. © 1995 Wiley-Liss, Inc.  相似文献   
8.
We address the question of whether the distribution of secondary structure propensities of the residues along the polypeptide chain (denominated here as secondary structure profiles) is conserved in proteins throughout evolution, for the particular case of alpha-helices. We have analyzed by CD the conformation of peptides corresponding to the five alpha-helices of two alpha/beta parallel proteins (ComA and Ara). The large alpha-helical population of peptide ComA-4 detected by CD in aqueous solution has been confirmed by NMR. These proteins are members of the CheY and P21-ras families, respectively, which have been studied previously in the same way (Muñoz V, Jiménez MA, Rico M, Serrano L, 1995, J Mol Biol 245:275-296). Comparison of the helical content of equivalent peptides reveals that protein alpha-helix propensity profiles are not conserved. Some equivalent peptides show very different helical populations in solution and this is especially evident in very divergent proteins (ComA and CheY). However, all the peptides analyzed so far adopted an important population of helical conformations in the presence of 30% trifluoroethanol, indicating that there could be a conserved minimal requirement for helical propensity.  相似文献   
9.
There is a 36 bp tract of extreme homopurine/homopyrimidine (PuPy) asymmetry in the maize Adh1 gene promoter (from –44 to –79) that is S1-hypersensitive in plasmids under supercoil tension. Oligodeoxynucleotides corresponding to the PuPy tract were designed to examine the secondary structure of the region and address the possible role of the tract in gene regulation. On the basis of oligodeoxynucleotide band-shift and DNase I footprinting analyses, it was concluded that the homopyrimidine oligodeoxynucleotide can form a triple helix with the duplex PuPy tract in vitro. Transient assays in protoplasts, suspension cells, and seedling roots show that the homopyrimidine oligodeoxynucleotide is also capable of repressing Adh1-GUS gene expression during co-transformation, presumably by the formation of a triple helix with the PuPy tract in vivo. The complementary homopurine oligodeoxynucleotide would not form a triple helix in vitro, nor would it repress Adh1-GUS in vivo. We propose that triple helix formation is a potential regulatory phenomenon in vivo, and that an intraregion triple helix could occur within the Adh1 promoter via the formation of H-DNA.  相似文献   
10.
The electric birefringence and circular dichroism spectra of poly(l-ornithine hydrobromide) have been measured in ethanol/water, 2-propanol/water and tertiary butyl alcohol/water mixtures of various compositions. This charged polypeptide underwent a transition from the coil conformation to the helical conformation at high alcohol content in every case tested. Anomalous birefringence signals, indicative of a field-induced helix-to-coil transition. were observed at high electric fields only in the case of ethanol/water mixtures. The reversing-pulse electric birefringence of this polypeptide has been studied in ethanol/water mixtures and in neutral aqueous solution. Upon rapid reversal of the pulse field, no transient could be observed. This confirms that the electric-field orientation of poly(l-ornithine hydrobromide) results predominantly from the contribution of the counterion-induced dipole moment, regardless of its molecular conformations. It is very probable that the backbone permanent dipole moment of the helical conformation is largely suppressed by the counterion-induced dipole moment in the ionized form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号