首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   3篇
  2013年   9篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有27条查询结果,搜索用时 758 毫秒
1.
Endovascular stents are being commonly used to treat cerebral wide-necked aneurysms recently. The effect of a stent placed in the parent artery is not only to protect the parent artery from occlusion, due to extension of coils and thrombosis, but also to act as flow diverter to vary the haemodynamics in the aneurysm. In this article, two idealised cerebral wide-necked aneurysms were created, one was sidewall aneurysm with curved parent vessel and the other was terminal aneurysm with the bifurcated parent vessel. The plexiglass models of the two aneurysms were ‘treated’ with commercial porous intravascular stents. The stented physical models were scanned by Micro-CT and the numerical models of the two idealised cerebral wide-necked aneurysms after stent placement were constructed from the scanned image files. The pulsatile flow of non-Newtonian fluid inside the models was simulated by using computational fluid dynamics package. From the simulated flow dynamics, various haemodynamic characteristics such as velocity contours, wall shear stress and oscillatory shear index (OSI) were computed. The velocity of the jet entering the sacs reduced after stent was deployed across the necks of both sidewall and terminal aneurysms; the wall shear stress on the distal neck of sidewall aneurysm reduced, the wall shear stress on the dome of the terminal aneurysm increased and the OSI on the dome of the terminal aneurysm reduced. Therefore, stent placement not only promotes thrombus formation in both aneurysm models but also reduces the regrowth risk of the sidewall aneurysm and the rupture risk of the terminal aneurysm.  相似文献   
2.
This work addresses the problem of prescribing proper boundary conditions at the artificial boundaries that separate the vascular district from the remaining part of the circulatory system. A multiscale (MS) approach is used where the Navier–Stokes equations for the district of interest are coupled to a non-linear system of ordinary differential equations which describe the circulatory system. This technique is applied to three 3D models of a carotid bifurcation with increasing stenosis resembling three phases of a plaque growth. The results of the MS simulations are compared to those obtained by two stand-alone models. The MS shows a great flexibility in numerically predicting the haemodynamic changes due to the presence of a stenosis. Nonetheless, the results are not significantly different from a stand-alone approach where flows derived by the MS without stenosis are imposed. This is a consequence of the dominant role played by the outside districts with respect to the stenosis resistance.  相似文献   
3.
Haemodynamics is believed to play an important role in the initiation, growth and rupture of intracranial aneurysms. In this context, computational haemodynamics has been extensively used in an effort to establish correlations between flow variables and clinical outcome. It is common practice in the application of Dirichlet boundary conditions at domain inlets to specify transient velocities as either a flat (plug) profile or a spatially developed profile based on Womersley's analytical solution. This paper provides comparative haemodynamics measures for three typical cerebral aneurysms.

Three dimentional rotational angiography images of aneurysms at three common locations, viz. basilar artery tip, internal carotid artery and middle cerebral artery were obtained. The computational tools being developed in the European project @neurIST were used to reconstruct the fluid domains and solve the unsteady Navier–Stokes equations, using in turn Womersley and plug-flow inlet velocity profiles. The effects of these assumptions were analysed and compared in terms of relevant haemodynamic variables within the aneurismal sac. For the aneurysm at the basilar tip geometries with different extensions of the afferent vasculature were considered to study the plausibility of a fully-developed axial flow at the inlet boundaries.

The study shows that assumptions made on the velocity profile while specifying inlet boundary conditions have little influence on the local haemodynamics in the aneurysm, provided that a sufficient extension of the afferent vasculature is considered and that geometry is the primary determinant of the flow field within the aneurismal sac. For real geometries the Womersley profile is at best an unnecessary over-complication, and may even be worse than the plug profile in some anatomical locations (e.g. basilar confluence).  相似文献   
4.
Balloon-occluded transarterial chemoembolisation (B-TACE) is an intraarterial transcatheter treatment for liver cancer. In B-TACE, an artery-occluding microballoon catheter occludes an artery and promotes collateral circulation for drug delivery to tumours. This paper presents a methodology for analysing the haemodynamics during B-TACE, by combining zero-dimensional and three-dimensional modelling tools. As a proof of concept, we apply the methodology to a patient-specific hepatic artery geometry and analyse two catheter locations. Results show that the blood flow redistribution can be predicted in this proof-of-concept study, suggesting that this approach could potentially be used to optimise catheter location.  相似文献   
5.
The perfused rat liver responds intensely to NAD+ infusion (20-100 microM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption are some of the effects that were observed. The aim of the present work was to investigate the distribution of the response to extracellular NAD+ along the hepatic acinus. The bivascularly perfused rat liver was used. Various combinations of perfusion directions (antegrade and retrograde) and infusion routes (portal vein, hepatic vein and hepatic artery) were used in order to supply NAD+ to different regions of the liver parenchyma, also taking advantage of the fact that its extracellular transformation generates steep concentration gradients. Oxygen uptake was stimulated by NAD+ in retrograde perfusion (irrespective of the infusion route) and transiently inhibited in antegrade perfusion. This indicates that the signal causing oxygen uptake inhibition is generated in the periportal area. The signal responsible for oxygen uptake stimulation is homogenously distributed. Stimulation of glucose release was more intense when NAD+ was infused into the portal vein or into the hepatic artery, indicating that stimulation of glycogenolysis predominates in the periportal area. The increases in perfusion pressure were more pronounced when the periportal area was supplied with NAD+ suggesting that the vasoconstrictive elements responding to NAD+ predominate in this region. The response to extracellular NAD+ is thus unequally distributed in the liver. As a paracrine agent, NAD+ is likely to be released locally. It can be concluded that its effects will be different depending on the area where it is released.  相似文献   
6.
We investigated whether hypertension induced by maternal lipopolysaccharide (LPS) administration during gestation is linked to peripheral vascular and renal hemodynamic regulation, through angiotensin II?→?NADPH-oxidase signalling, and whether these changes are directly linked to intrauterine oxidative stress. Female Wistar rats were submitted to LPS, in the absence or presence of α-tocopherol during pregnancy. Malondialdehyde in placenta and in livers from dams and foetuses was enhanced by LPS. Tail-cuff systolic blood pressure (tcSBP) was elevated in the 16-week-old LPS offspring. Renal malondialdeyde and protein expression of NADPH oxidase isoform 2 were elevated in these animals at 20?weeks of age. Maternal α-tocopherol treatment prevented the elevation in malondialdehyde induced by LPS on placenta and livers from dams and foetuses, as well as prevented the elevation in tcSBP and the elevation in renal malondialdehyde in adult life. LPS offspring presented impairment of endothelium-dependent relaxation in aorta and mesenteric rings, which was blunted by angiotensin type 1 receptor (AT1R) blockade and NADPH oxidase inhibition. At age of 32?weeks, renal hemodynamic parameters were unchanged in anaesthetised LPS offspring, but angiotensin II infusion led to an increased glomerular filtration rate paralleled by filtration fraction elevation. The renal haemodynamic changes provoked by angiotensin II was prevented by early treatment with α-tocopherol and by late treatment with NADPH oxidase inhibitor. These results point to oxidative stress as a mediator of offspring hypertension programmed by maternal inflammation and to the angiotensin II?→?NADPH oxidase signalling pathway as accountable for vascular and renal dysfunctions that starts and maintains hypertension.  相似文献   
7.
Novel cardiovascular replacements are being developed by using degradable synthetic scaffolds, which function as a temporary guide to induce neotissue formation directly in situ. Priming of such scaffolds with fast‐releasing monocyte chemoattractant protein‐1 (MCP‐1) was shown to improve the formation of functional neoarteries in rats. However, the underlying mechanism has not been clarified. Therefore, the goal of this study was to investigate the effect of a burst‐release of MCP‐1 from a synthetic scaffold on the local recruitment of circulating leucocytes under haemodynamic conditions. Herein, we hypothesized that MCP‐1 initiates a desired healing cascade by recruiting favourable monocyte subpopulations into the implanted scaffold. Electrospun poly(ε‐caprolactone) scaffolds were loaded with fibrin gel containing various doses of MCP‐1 and exposed to a suspension of human peripheral blood mononuclear cells in static or dynamic conditions. In standard migration assay, a dose‐dependent migration of specific CD14+ monocyte subsets was observed, as measured by flow cytometry. In conditions of pulsatile flow, on the other hand, a marked increase in immediate monocyte recruitment was observed, but without evident selectivity in monocyte subsets. This suggests that the selectivity was dependent on the release kinetics of the MCP‐1, as it was overruled by the effect of shear stress after the initial burst‐release. Furthermore, these findings demonstrate that local recruitment of specific MCP‐1‐responsive monocytes is not the fundamental principle behind the improved neotissue formation observed in long‐term in vivo studies, and mobilization of MCP‐1‐responsive cells from the bone marrow into the bloodstream is suggested to play a predominant role in vivo.  相似文献   
8.
The Circle of Willis (CoW) is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. A 1-dimensional model of the CoW has been created to simulate a series of possible clinical scenarios such as occlusions in afferent arteries, absent or string-like circulus vessels, or arterial infarctions. The model captures cerebral haemodynamic auto-regulation by using a proportional-integral-derivative (PID) controller to modify efferent resistances and maintain optimal efferent flowrates for a given circle geometry and afferent blood pressure. Results match limited clinical data and results obtained in prior studies to within 6%. In addition, a set of boundary conditions and geometry is presented for which the auto-regulated system cannot provide the necessary efferent flowrates and perfusion, representing a condition with increased risk of stroke and highlighting the importance of modelling the haemodynamics of the CoW. The system model created is computationally simple so it can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures.  相似文献   
9.
Aortic dissection and atherosclerosis are highly fatal diseases. The development of both diseases is closely associated with highly complex haemodynamics. Thus, in predicting the onset of cardiac disease, it is desirable to obtain a detailed understanding of the flowfield characteristics in the human cardiovascular circulatory system. Accordingly, in this study, a numerical model of a normal human thoracic aorta is constructed using the geometry information obtained from a phase-contrast magnetic resonance imaging (PC-MRI) technique. The interaction between the blood flow and the vessel wall dynamics is then investigated using a coupled fluid–structure interaction (FSI) analysis. The simulations focus specifically on the flowfield characteristics and pulse wave velocity (PWV) of the blood flow. Instead of using a conventional PC-MRI method to measure PWV, we present an innovative application of using the FSI approach to numerically resolve PWV for the assessment of wall compliance in a thoracic aorta model. The estimated PWV for a normal thoracic aorta agrees well with the results obtained via PC-MRI measurement. In addition, simulations which consider the FSI effect yield a lower predicted value of the wall shear stress at certain locations in the cardiac cycle than models which assume a rigid vessel wall. Consequently, the model provides a suitable basis for the future development of more sophisticated methods capable of performing the computer-aided analysis of aortic blood flows.  相似文献   
10.
Blood flow in the largest arteries of the arm up to the digital arteries is numerically modelled using the one-dimensional equations of pressure and flow wave propagation in compliant vessels. The model can be applied to different anatomies of arterial networks and can simulate compression of arteries, these allowing us to simulate the modified Allen's test (MAT) and to assess its suitability for the detection of sufficient collateral flow in the hand if radial blood supply is interrupted. The test measures blood flow in the superficial palmar arch before and during compression of the radial artery. The absence of reversal flow in the palmar arch with the compression indicates insufficient collateral flow and is referred to as a positive MAT. This study shows that small calibres of the superficial palmar arch and insufficient compression of the radial artery can lead to false-positive results. Measurement of the drop in digital systolic pressures with compression of the radial artery has proved to be a more sensitive test to predict the presence of sufficient ulnar collateral flow in networks with small calibres of the superficial palmar arch. However, this study also shows that digital pressure measurements can fail in detecting enough collateral flow if the radial artery is insufficiently compressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号