首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   100篇
  国内免费   198篇
  2024年   3篇
  2023年   25篇
  2022年   21篇
  2021年   23篇
  2020年   34篇
  2019年   29篇
  2018年   41篇
  2017年   37篇
  2016年   44篇
  2015年   24篇
  2014年   33篇
  2013年   38篇
  2012年   34篇
  2011年   45篇
  2010年   23篇
  2009年   33篇
  2008年   38篇
  2007年   55篇
  2006年   36篇
  2005年   31篇
  2004年   34篇
  2003年   26篇
  2002年   27篇
  2001年   24篇
  2000年   17篇
  1999年   17篇
  1998年   20篇
  1997年   22篇
  1996年   23篇
  1995年   21篇
  1994年   16篇
  1993年   11篇
  1992年   19篇
  1991年   12篇
  1990年   17篇
  1989年   12篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
排序方式: 共有1014条查询结果,搜索用时 421 毫秒
1.
Summary The influence of total nitrification to nitrate or partial nitrification to nitrite on the soil organic nitrogen status was examined. NH 4 +15N was added to the soil in the absence and the presence of NaClO3, respectively nitrapyrin. The first chemical inhibits only nitrate formation, the second inhibits total nitrification. The accumulation of nitrite nitrogen in the soil at levels up to 5 mg kg–1 increased the loss of nitrogen. Yet, it did not increase the binding of mineral nitrogen into soil organic matter, relative to the control soil. The data suggest that the biochemistry of the nitrite formation process, rather than the levels of nitrite ions formed, are of primary importance in the role of nitrification mediated nitrosation of soil organic matter.  相似文献   
2.
The economic viability of the wildlife based enterprises (bee-keeping and caterpillar utilization) in Malawi is discussed in relation to conventional agricultural enterprises (maize, beans and ground-nuts). A strong incentive emerges for rural people to adopt wildlife management as an adjunct to subsistence agriculture, and therefore, to promote conservation of natural ecosystems and wildlife habitats in the face of growing human population and demand for land. Dependence on agriculture has depleted the wildlife resource outside protected areas and has been less effective in improving the wealth and living standards of most rural people. This study illustrates that the Malawi Department of National Parks and Wildlife needs to introduce economic incentives that integrate biological conservation with economic development for the rural people. The management programme involves the adoption of a rotation burning policy that promotes vegetation coppicing, eases harvesting and promotes high caterpillar yields.  相似文献   
3.
How Can the Eco‐efficiency of a Region be Measured and Monitored?   总被引:2,自引:0,他引:2  
The concept of eco-efficiency is commonly referred to as a business link to sustainable development. In this article, ecoefficiency is examined at a regional level as an approach to promoting the competitiveness of economic activities in the Finnish Kymenlaakso region and mitigating their harmful impacts on the environment. The aim is to develop appropriate indicators for monitoring changes in the eco-efficiency of the region. A starting point is to produce indicators for the environmental and economic dimensions of regional development and use them for measuring regional eco-efficiency. The environmental impact indicators are based on a life-cycle assessment method, producing different types of environmental impact indicators: pressure indicators (e.g., emissions of CO2), impact category indicators (e.g., CO2 equivalents in the case of climate change), and a total impact indicator (aggregating different impact category indicator results into a single value). Environmental impact indicators based on direct material input, total material input, and total material requirement of the Kymenlaakso region are also assessed. The economic indicators used are the gross domestic product, the value added, and the output of the main economic sectors of Kymenlaakso. In the eco-efficiency assessment, the economic and environmental impact indicators are monitored in the same graph. In a few cases eco-efficiency ratios can also be calculated (the economic indicators are divided by the environmental indicators). Output (= value added + intermediate consumption) is used as an economic indicator related to the environmental impact indicators, which also cover the upstream processes of the region's activities. In the article, we also discuss the strengths and weaknesses of using the different environmental impact indicators.  相似文献   
4.
Studies were conducted to compare N mineralization rates in salt-amended nonsaline soils to naturally-occurring saline soils. NaCl, CaCl2, and Na2SO4 were added to nonsaline soils at rates that produced electrical conductivities of the saturation extracts (ECe) of 5, 10, 15, and 20 dS m−1. Saline soils with similar properties were leached to the same ECc levels. N mineralization in the Chino soil was inhibited by salt addition, particularly with sodium and calcium chlorides. In the Domino soil there was some inhibition of N mineralization with the chloride salts, but enhancement with Na2SO4 was observed. Nitrification in both soils was more sensitive to salt addition than ammonification. N mineralization occurred more slowly in both leached saline soils compared to the salt-amended soils. Leached saline soils often accumulated greater amounts of inorganic N compared to their native saline counterparts, particularly with the 5 dS m−1 Chino soil (native, 44 dS m−1) and with the 5, 10, 15 and 20 dS m−1 Domino soils (native, 32 dS m−1). Kinetic parameters were estimated by the linear least squares (LLS) and the nonlinear least squares (NLLS) methods. Generally, the LLS transformation estimated greater values of potentially mineralizable N (No) and lower rate constants (k). With the NLLS equation, No values for the leached saline soils were usually lower, and k values usually higher than in the salt-amended soils. The nonsaline controls generally had the highest No and lowest k estimates. Average LLS rate constants for the salt-amended and leached saline soils were 0.055 and 0.083 for the Chino, and 0.104 and 0.137 week−1, respectively, for the Domino soils. With the NLLS equation, average k values for the salt-amended and leached saline soils were 0.087 and 0.089 for the Chino, and 0.181 and 0.387 week−1, respectively, for the Domino soils. These results suggest that N mineralization rates obtained in salt-amended nonsaline soils may not be representative of those in naturally-occurring saline soils.  相似文献   
5.
The effect of soil burning on N and P availability and on mineralization and nitrification rates of N in the burned mineral soil was studied by combustion of soils in the laboratory. At a fire temperature of 600°C, there was a complete volatilization of NH4 and a significant increase of pH, from 7.6 in the unburned soil to 11.7 in the burned soil. Under such conditions ammonification and nitrification reactions were inhibited. Less available P was produced immediately after the fire at 600°C, as compared to P amount produced at 250°C. Burning the soils with plants caused a decrease in NH4-N and (NO2+NO3)-N concentrations in the soil as well as a reduction in ammonification and nitrification rates. Combustion of soil with plants contributed additional available P to the burned soil. The existence of a non-burned soil under the burned one played an important role in triggering ammonification and nitrification reactions.  相似文献   
6.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   
7.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   
8.
Laboratory incubation and field experiments were conducted to evaluate thiourea, ATC (4-amino-1, 2, 4 triazole hydrochloride) and N-Serve 24 E (2-chloro-6-trichloromethyl-pyridine) as inhibitors of nitrification of fertilizer N. In the incubation experiment, most of the added aqueous NH3 or urea was nitrified at 14 days on both soils, but addition of the inhibitors to fertilizer N decreased the conversion of NH4−N to NO3−N markedly. There was less nitrification for ATC and thiourea but not for N-Serve 24 E when the fertilizers and the inhibitors were placed at a point as opposed to when mixed into soil. After 28 days, ATC and N-Serve 24 E were more effective in inhibiting nitrification than thiourea. ATC and N-Serve 24 E also inhibited release of mineral N (NH4−N+NO3−N) from native soil N. In the uncropped field experiment, which received N fertilizers in the fall, nitrification of fall-applied N placed in the 15-cm bands was almost complete by early May in the Malmo soil, but not in the Breton soil. When ATC or thiourea had been applied with urea, nitrification of fall-applied N was depressed by May and the recovery of applied N as NH4−N was greater with increasing band spacing to 60 cm or placing N fertilizer in nests (a method of application where urea prills were placed at a point in the soil in the center of 60×60 cm area). In late June, the percentage recovery of fall-applied N in soil as NH4−N or mineral N increased with wide band spacing, or nest placement, or by adding ATC to fertilizer N on both soils. These results indicate that placing ammonium-based N fertilizers in widely-spaced bands or in nests with low rates of inhibitors slows nitrification enough to prevent much of the losses from fall-applied N. Scientific Paper No. 552, Lacombe Research Station, Research Branch, Agric, Can.  相似文献   
9.
In an 18 year old Japanese larch stand, leaf characteristics such as area, weight, gross photosynthetic rate and respiration rate were studied in order to obtain basic information on estimating canopy photosynthesis and respiration. The leaf growth courses in area and weight from bud opening were approximated by simple logistic curves. The growth coefficient for the area growth curve was 0.155–0.175 day−1, while that for the weight growth was 0.112–0.117 day−1. The larger growth coefficient in area growth caused the seasonal change in specific leaf area (SLA) that increased after bud opening to its peak early in May at almost 300 cm2 g−1 and then decreased until it leveled off at about 140 cm2g−1. The change inSLA indicates the possibility that leaf area growth precedes leaf thickness growth. The relationship between the coefficientsa andb of the gross photosynthetic rate (p)-light flux density (1) curve (p=bI/(1+aI)) and the mean relative light flux density (I′/I 0) at each canopy height were approximated by hyperbolic formulae:a=A/(I′/I 0)+B andb=C/(I′/I 0)+D. Leaf respiration rate was also increased with increasingI′/I 0. Seasonal change of gross photosynthetic rate and leaf respiration rate were related to mean air temperature through linear regression on semilogarithmic co-ordinates.  相似文献   
10.
To demonstrate the contribution of atmospheric ammonium to soil acidification in acid forest soils, a field study with13N-ammonium as tracer was performed in an oak-birch forest soil. Monitoring and analysis of soil solutions from various depths on the13N-ammonium and15N-nitrate contents, showed that about 54% of the applied15N-ammonium was oxidized to nitrate in the forest floor. Over a period of one year about 20% of the15N remained as organic nitrogen in this layer. The percentage15N enrichment in ammonium and nitrate were in the same range in all the forest floor percolates, indicating that even in extremely acid forest soils (pH < 4) nitrate formation from ammonium can occur. Clearly, atmospheric ammonium can contribute to soil acidification even at low soil pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号