首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2021年   1篇
  2019年   2篇
  2016年   2篇
  2013年   2篇
  2012年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Enhanced soil ammonium () concentrations in wetlands often lead to graminoid dominance, but species composition is highly variable. Although is readily taken up as a nutrient, several wetland species are known to be sensitive to high concentrations or even suffer toxicity, particularly at low soil pH. More knowledge about differential graminoid responses to high availability in relation to soil pH can help to better understand vegetation changes. The responses of two wetland graminoids, Juncus acutiflorus and Carex disticha, to high (2 mmol·l?1) versus control (20 μmol·l?1) concentrations were tested in a controlled hydroponic set up, at two pH values (4 and 6). A high concentration did not change total biomass for these species at either pH, but increased C allocation to shoots and increased P uptake, leading to K and Ca limitation, depending on pH treatment. More than 50% of N taken up by C. disticha was invested in N‐rich amino acids with decreasing C:N ratio, but only 10% for J. acutiflorus. Although both species appeared to be well adapted to high loadings in the short term, C. disticha showed higher classic detoxifying responses that are early warning indicators for decreased tolerance in the long term. In general, the efficient aboveground biomass allocation, P uptake and N detoxification explain the competitive strength of wetland graminoids at the expense of overall biodiversity at high loading. In addition, differential responses to enhanced affect interspecific competition among graminoids and lead to a shift in vegetation composition.  相似文献   
4.
Background: There is a lack of consensus about the productivity–richness relationship, with several recent studies suggesting that it is not productivity but other factors that are the important drivers that determine species richness.

Aims: Here, we examine the relationship between productivity, functional group dominance and plant species richness at the plot scale in Tibetan Plateau meadows. These alpine meadows are ideal to examine the species productivity-richness relationship because they have a very high species richness, a large gradient in productivity, and can be dominated by either graminoids (grasses and sedges) or forbs.

Methods: We measured plant species richness and above-ground biomass along a natural gradient of functional group abundance in 44 plots distributed across five natural, winter-grazed but otherwise undisturbed sites in the eastern part of the Qing-Hai Tibetan Plateau, in Gansu province, China in 2008.

Results: Graminoid abundance (i.e. graminoid biomass as percent of the total above-ground biomass) explained 39% of plot differences in species richness while neither productivity nor the biomass of the three most abundant plant species, either individually or combined, were a significant predictor of species richness.

Conclusions: Our results show that within these alpine meadows, a shift from graminoid to forb dominance, rather than the individual dominant species or productivity itself, is strongly correlated with species richness. Thus, differences in functional group abundance can be a strong driver of observed plant species richness patterns.  相似文献   

5.
Aims and Methods Vascular plants are known to influence the production, transport and oxidation of methane in wetland soils, but these processes are not well understood. Using plants grown in intact peat cores, we compared the influence upon methane emissions of 20 forb and graminoid species from European wetlands. We measured plant-mediated transport of methane (conduit or chimney effect) using a novel agar-sealing technique that prevented methane exchange from the bare soil to the atmosphere.Important Findings The plant-mediated transport (chimney effect) represented between 30% and almost 100% of the total methane flux, with graminoids exhibiting greater internal transport than forbs. In general, plants with less dense root tissues and a relatively larger root volume exhibited a larger chimney effect. Most species (12 out of 20) significantly reduced methane emissions compared to bare soil and only one species, Succisa pratensis, increased them. We suggest that characterising vegetation in terms of plant functional traits and plant processes offers an effective method for estimating methane emissions from wetlands. However, we found no correlation between the magnitude of the chimney effect and the overall influence of different plant species on methane emissions. Besides introducing a useful tool to study plant-mediated transport, this work suggests that characterising vegetation in terms of functional traits could improve estimates of methane emissions from wetlands, which in turn could help in designing mitigation strategies.  相似文献   
6.
Plant parasitism and herbivory are common phenomena in natural grasslands, where they may significantly affect competition between plant species. However, only few studies have simultaneously examined these two processes. We investigated whether the root hemiparasite Odontites litoralis ssp. litoralis affects the outcome of competition between two clonal graminoids, the endangered Puccinellia phryganodes and the common species Agrostis stolonifera, and whether simulated grazing affects the interaction among these three species. This study system simulates the community of early successional stages of the Bothnian Bay salt marsh meadows, which are intensively grazed by greylag geese (Anser anser). We conducted a factorial greenhouse experiment to study the effects of interspecific competition (one or two host species present), hemiparasitic infection (hemiparasite present or not), and simulated grazing (host clipped or not) on Puccinellia and Agrostis. Puccinellia was clearly an inferior competitor to Agrostis, whereas the two species did not differ as hosts for the hemiparasite. Infection by the hemiparasite reduced the aboveground biomass of Puccinellia and Agrostis by 59% and 45%, respectively. Competition with Agrostis decreased the biomass of parasitised Puccinellia by 36% and that of non-parasitised Puccinellia by 56%. Parasitism thus seemed to benefit Puccinellia indirectly by decreasing the relative competitive advantage of Agrostis. Moreover, parasitism increased the relative contribution of Puccinellia to the total aboveground host plant biomass. Simulated grazing decreased the aboveground biomass of Agrostis significantly more than that of Puccinellia and thus increased the competitive ability of Puccinellia. Simulated grazing of the two host species did not affect the performance of Odontites. These results suggest that both hemiparasitic plants and herbivory may play a significant role in the maintenance of plant species diversity by promoting competitively inferior species.  相似文献   
7.
8.
We examined effects of external supplies of nitrogen (N) and phosphorus (P) from the environment and internal supplies of N and P from within litter tissue on wild rice shoot and root litter decomposition and N and P dynamics. To investigate the effects of external supplies, wild rice shoot and root litterbags were decayed in mesocosms in the field over 115 days with either added N or P or a control in ambient conditions. To investigate the effects of the internal nutrient supply, wild rice plants were grown with added N, P, both N and P, or no supplemental nutrient, to produce enriched litters, which were then decayed for 168 days under controlled temperature in the laboratory. Both external and internal N and P supplies affected shoot litter decay more than decay of root litter. Increased external P supply significantly increased the rate of wild rice shoot decay and P mineralization but adding N had no effect on decay rates through time. Neither adding N nor P influenced root decay. Enrichment of P internally in the litter through fertilization increased the concentration of P (0.16%) and water-soluble compounds (28.7% WS) in shoot litter compared to control shoot litter (0.11% P, 19.8% WS), which likely caused the significant increase in shoot decay rates, particularly in the labile pool. In contrast, N enrichment not only increased plant growth but also increased lignin concentrations (7.5%) compared to control shoot litter (2.7% lignin) for added structural support. This significantly inhibited decay and nearly doubled the amount of mass remaining after 168 days (42.1% OM) when compared to control shoots (22.4% OM). Increased lignin likely overrides a concomitant increase in nitrogen concentration in shoot litter and appears to control wild rice decomposition. Lignin and phosphorus appear to play a key role in driving wild rice decay through the effects on litter quality.  相似文献   
9.
Summary

The above-ground standing crop of an Agrostis-with-Festuca grassland near Cabrach, Banff, was measured nine times in a 16-month period by harvesting sample plots. Standing crop peaked in late summer when the weight of live graminoid phytomass reached its seasonal maximum.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号