首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  国内免费   10篇
  2022年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   9篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有70条查询结果,搜索用时 250 毫秒
1.
A novel collagen-glycosaminoglycan (C-GAG) substrate was developed to overcome the optical opacity of a HATF nitrocellulose substrate and to provide a more physiological permeable substrate for cocultured Sertoli and spermatogenic cells. Cocultures were prepared on optically transparent C-GAG discs attached to a polyester mesh to facilitate handling. Sertoli cells displayed a cuboidal-to-columnar shape; a large number of spermatogonia and primary spermatocytes connected by intercellular bridges were associated with basolateral and apical surfaces of Sertoli cells up to 12 days after plating. Rat Sertoli-spermatogenic cell cocultures have been used for testing the effect of toxicants on rat spermatogenesis in vitro. In our initial studies, we tested the effects of the toxicant gossypol on spermatogenic cells cocultured with Sertoli cells on nonpermeable (plastic) and permeable substrates (HATF nitrocellulose) under both standard culture conditions and during perifusion after achieving a continuous electrical-resistant cell monolayer. A selective mitochondrial structural damage was observed in spermatogenic cells (spermatogonia and spermatocytes) but not in the coexisting Sertoli cells. This damage was time- (15–60 min) and dose-dependent (0.1–10µM) and developed more rapidly under perifusion conditions. Similar mitochondrial damage was reported in the intact animal but required higher concentrations (mg) and longer administration time (months) for detection. Studies are in progress to evaluate the effect of additional toxic chemical agents on functional properties of Sertoli and spermatogenic cells in cocultures prepared on various classes of C-GAG substrates.Abbreviations C-GAG, collagen type I-glycosaminoglycans - C-C6S, collagen type I-chondroitin-6-sulfate - C-H, collagen type I-heparin  相似文献   
2.
Bloodstream Trypanosoma cruzi trypomastigotes isolated from infected mice undergo reduction of motility and structural damages after 5 to 45 min exposure to gossypol at concentrations ranging from 5 to 50 μM. When 1% serum albumin is added to the incubation medium, no alterations of parasites are observed, even with 100 μM gossypol. Intracellular T. cruzi amastigotes in infected Vero cell cultures exposed to 5 μM gossypol for 2 h do not show changes. Incubation with 5 μM gossypol for 48 h produces complete disruption of host cells; however, the amastigotes they contain show only mineor alterations. The observations indicate that, in protein-rich media, gossypol is complexed into associations which have no activity on the different forms of the T. cruzi biological cycle.  相似文献   
3.
A new cadalane type sesquiterpenoid, 1, 6-dihydroxy-3-methyl-5-(1-methylethyl)-7-methoxy-8-carboxylic acid (8 → 1 lactone) has been isolated from a 50% aqueous methanolic extract of 6–9 months old cultivated roots of Salmalia malbarica (Bombax malbaricum).  相似文献   
4.
The triterpenoid aldehydes, gossypol (1), 6-methoxygossypol (2) and 6,6′-dimethoxygossypol (3); and the sesquiterpenoid aldehydes, hemigossypol (4) and methoxyhemigossypol (5), were isolated from 1-week-old roots of Gossypium hirsutum and G. barbadense and identified. This is the first report of 2 and 3 in nature and of 4 and 5 from healthy roots. Compounds 2 and 3 also constituted 30% of the total terpenoid aldehydes in the seeds of 1 cultivar of G. barbadense, but occurred only in trace quantities in those of G. hirsutum. Spectral data (UV, IR, NMR, MS) and proof of structure for 2 and 3 are presented.  相似文献   
5.
Human aspartate/asparagine-β-hydroxylase (AspH) is a 2-oxoglutarate (2OG) dependent oxygenase that catalyses the hydroxylation of Asp/Asn-residues of epidermal growth factor-like domains (EGFDs). AspH is reported to be upregulated on the cell surface of invasive cancer cells in a manner distinguishing healthy from cancer cells. We report studies on the effect of small-molecule active pharmaceutical ingredients (APIs) of human cancer therapeutics on the catalytic activity of AspH using a high-throughput mass spectrometry (MS)-based inhibition assay. Human B-cell lymphoma-2 (Bcl-2)-protein inhibitors, including the (R)-enantiomer of the natural product gossypol, were observed to efficiently inhibit AspH, as does the antitumor antibiotic bleomycin A2. The results may help in the design of AspH inhibitors with the potential of increased selectivity compared to the previously identified Fe(II)-chelating or 2OG-competitive inhibitors. With regard to the clinical use of bleomycin A2 and of the Bcl-2 inhibitor venetoclax, the results suggest that possible side-effects mediated through the inhibition of AspH and other 2OG oxygenases should be considered.  相似文献   
6.
Cottonseed remains a low‐value by‐product of lint production mainly due to the presence of toxic gossypol that makes it unfit for monogastrics. Ultra‐low gossypol cottonseed (ULGCS) lines were developed using RNAi knockdown of δ‐cadinene synthase gene(s) in Gossypium hirsutum. The purpose of the current study was to assess the stability and specificity of the ULGCS trait and evaluate the agronomic performance of the transgenic lines. Trials conducted over a period of 3 years show that the ULGCS trait was stable under field conditions and the foliage/floral organs of transgenic lines contained wild‐type levels of gossypol and related terpenoids. Although it was a relatively small‐scale study, we did not observe any negative effects on either the yield or quality of the fibre and seed in the transgenic lines compared with the nontransgenic parental plants. Compositional analysis was performed on the seeds obtained from plants grown in the field during 2009. As expected, the major difference between the ULGCS and wild‐type cottonseeds was in terms of their gossypol levels. With the exception of oil content, the composition of ULGCS was similar to that of nontransgenic cottonseeds. Interestingly, the ULGCS had significantly higher (4%–8%) oil content compared with the seeds from the nontransgenic parent. Field trial results confirmed the stability and specificity of the ULGCS trait suggesting that this RNAi‐based product has the potential to be commercially viable. Thus, it may be possible to enhance and expand the nutritional utility of the annual cottonseed output to fulfil the ever‐increasing needs of humanity.  相似文献   
7.
The histone methyltransferase G9a is overexpressed in a variety of cancer types, including pancreatic adenocarcinoma, and promotes tumor invasiveness and metastasis. We recently reported the discovery of BRD4770, a small-molecule inhibitor of G9a that induces senescence in PANC-1 cells. We observed that the cytotoxic effects of BRD4770 were dependent on genetic background, with cell lines lacking functional p53 being relatively resistant to compound treatment. To understand the mechanism of genetic selectivity, we used two complementary screening approaches to identify enhancers of BRD4770. The natural product and putative BH3 mimetic gossypol enhanced the cytotoxicity of BRD4770 in a synergistic manner in p53-mutant PANC-1 cells but not in immortalized non-tumorigenic pancreatic cells. The combination of gossypol and BRD4770 increased LC3-II levels and the autophagosome number in PANC-1 cells, and the compound combination appears to act in a BNIP3 (B-cell lymphoma 2 19-kDa interacting protein)-dependent manner, suggesting that these compounds act together to induce autophagy-related cell death in pancreatic cancer cells.  相似文献   
8.
A new cotton variant with reduced levels of terpenoid aldehydes (sesquiterpenoids and sesterterpenoids (heliocides)) was isolated from the progeny of hemizygous cotton (Gossypium hirsutum cv. Coker 312) transformed with antisense (+)-delta-cadinene synthase cDNA. Southern analysis of leaf DNA digested with HindIII, Pst or KpnI restriction endonucleases did not detect any antisense cdn1-C1 DNA in the genome of the variant. The gossypol content in the seed of the variant was markedly lower than in the seed of T1 antisense plants. Eighty-nine percent of the variant seed had a 71.1% reduction in gossypol and the foliage of the variant plants showed a 70% reduction in gossypol and a 31% reduction in heliocides. Compared to non-transformed plants there was no reduction in the number of lysigenous glands in the seed of the variant. The cotton variant shows uncoupling of terpenoid aldehyde synthesis and gland formation. The cotton variant may have resulted from somaclonal variation occurring in the callus tissue during the transformation-regeneration process.  相似文献   
9.
AIMS: To assess the effect of different concentrations of gossypol (0, 2, 4, 10 and 20 mg l(-1)) in combination with NaCl and Na(2)SO(4) (20 mS cm(-1)) on the conidial germination and viability of Fusarium oxysporum f.sp. vasinfectum (Fov). METHODS AND RESULTS: A multinomial logistic model was developed to estimate the germination probability of Fov. The inhibitory effect was markedly evident at the two highest concentrations of gossypol; it varied among the isolates tested and with time, and it was attenuated by the presence of sodium salts. The inhibition was temporary as the germination probability increased after 8 h. Fluorescent staining revealed that gossypol either killed the conidia or retarded the elongation of the germ tubes. CONCLUSION: Fov showed the ability to overcome gossypol inhibition over time, and the inhibitory effect is reduced under saline conditions. Differential responses among Fov isolates to the presence of gossypol suggest that gossypol tolerance is genetically determined in the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This study suggests that selecting for high plant gossypol cultivars would have minimal effect on the overall Fov resistance of cotton. A new statistical model was developed to explore the statistical significance of plant-pathogen interactions.  相似文献   
10.
Abstract Effects of CO2 level (ambient vs. elevated) on the interactions among three cotton (Gossypium hirsutum) genotypes, the cotton aphid (Aphis gossypii Glover), and its hymenoptera parasitoid (Lysiphlebia japonica Ashrnead) were quantified. It was hypothesized that aphid‐parasitoid interactions in crop systems may be altered by elevated CO2, and that the degree of change is influenced by plant genotype. The cotton genotypes had high (M9101), medium (HZ401) and low (ZMS13) gossypol contents, and the response to elevated CO2 was genotype‐specific. Elevated CO2 increased the ratio of total non‐structural carbohydrates to nitrogen (TNC: N) in the high‐gossypol genotype and the medium‐gossypol genotype. For all three genotypes, elevated CO2 had no effect on concentrations of gossypol and condensed tannins. A. gossypii fitness declined when aphids were reared on the high‐gossypol genotype versus the low‐gossypol genotype under elevated CO2. Furthermore, elevated CO2 decreased the developmental time of L. japonica associated with the high‐gossypol genotype and the low‐gossypol genotype, but did not affect parasitism or emergence rates. Our study suggests that the abundance of A. gossypii on cotton will not be directly affected by increases in atmospheric CO2. We speculate that A. gossypii may diminish in pest status in elevated CO2 and high‐gossypol genotype environments because of reduced fitness to the high‐gossypol genotype and shorter developmental time of L. japonica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号